CONTENTS

Calonecctria and its type species, C. dalziniana, a later synonym of C. pyrochroa........................ AMY Y. ROSSMAN 321
The species problem in the Pathyrella candidolea complex.. M. C. GALLAND, R. F. O. KEMP AND M. K. JURAND 329

Type studies in the genus Peziza.
VI. Species described by C. H. Peck...................... DONALD H. PFISTER 335
VII. Miscellaneous species described by M. J. Berkeley and M. A. CURTIS........ DONALD H. PFISTER 339
Entrophospora, a new genus in the Endogonaceae... R. N. AMES AND R. W. SCHNEIDER 347
Type studies: some Cortinarius and Tricholoma species described by Charles Horton Peck........ JOSPEH F. AMMIRATI AND CLARK L. OVREBO 353
Studies on the Dimargaritaceae (Mucorales) II. A new Diapira parasitic on ascomycete hosts........ P. C. MISRA AND KANCHAN LATA 372

Apophyosmyces, a new genus of the Mucorales,........ P. C. MISRA, K. J. SRIVASTAVA AND KANCHAN LATA 377
An orthographic correction................................ LIBERO AJELLO AND ARVIND A. PADHYE 383

Mycoflora Saximontanensis Exsiccata
Centum XVI.. W. G. SOLHEIM 385
Centum XVII.. W. G. SOLHEIM AND GEORGE B. CUMMINS 395

Notes on hyphomycetes.
XXX. On three species of Idariella................................ G. MORGAN-JONES 402
XXXI. Chaetomphalus subumaneus sp. nov................. G. MORGAN-JONES 411
Fulicolous ascomycetes: 3. The stalked capnodiaceous species........ DON R. REYNOLDS 417
Studies on the Lepiotaeeae of the Pacific Coast region. I. Two new species HELEN V. SMITH AND WALTER J. SUNDBERG 446

Notes on Collybia. I. Collybia alcalivirens.................. ROY E. HALLING 453
Recolte de Cortinaria intermedia dans les Pyrénées Atlantiques, espèce nouvelle pour l’Europe........ FRANÇOISE CANDOUSSAU 459
Clathrus ruber in California and worldwide distributional records........ WILLIAM R. BURK 463

Pleolithus teniatorius, a pavement breake in southern California........................ WILLIAM R. BURK AND GEORGE F. LUPONE 469

Acaulospora bireticulata sp. nov..................................... FREDERICK M. ROTHWELL AND JAMES M. TRAPPE 471
First authenticated North American record of Moniliinia fructigena, with notes on related species........ LEKH R. BATRA 476
A preliminary account of the taxa described in Calonecctria........................ AMY Y. ROSSMAN 485
New combinations in Rhizoploca for endemic American species of Lecanora............... WILLIAM A. WEBER 559

Revue des Livres.. G. L. HENNEBERT 561

Author INDEX.. 562
MYCOTAXON publication dates, 7(3) and 8(1). 563
Errata, volumes 7 and 8... 564
Reviewers.. 564
INDEX to Fungal and Lichen Taxa.......................... 565

[MYCOTAXON for January-March 1979 (8: 1-320)
was issued January 13, 1979]
MYCOTAXON

VOLUME VIII, 1979

COMPLETE IN TWO QUARTERLY ISSUES
CONSISTING OF iv + 572 PAGES
INCLUDING FIGURES
AND ONE COLORED PLATE
WITHOUT PAGE NUMBER
TABLE OF CONTENTS, VOLUME EIGHT

No. 1 January-March 1979

Agaricus in North America: type studies, ALICE E. H. FREEMAN...... 1
Agaricus in the southeastern United States, ALICE E. H. FREEMAN... 50
New and interesting dematiaceous hyphomycetes from Florida,
B. J. DYKO & B. C. SUTTON... 119
Phialae graniglena, an older name for Gloeotinia temulenta,
TROND SCHUMACHER... 125
Myxomycetes from Ecuador, M. L. FARR, U. ELIASSEN & K. P. DUMONT. 127
Contribution to the study of lichens from Kivu
D. F. FARR, U. ELIASSEN & K. P. DUMONT............................ 135
Notes on hyphomycetes.
XXVI. Unispora harroldii gen. et sp. nov., ROBERT C. SINCLAIR
& G. MORGAN-JONES.. 140
XXVII. Mycogone psilocybin, a new mycoparasitic species, G.
MORGAN-JONES & DENNIS J. GRAY.. 144
XXVIII. Veronae bambusae sp. nov., G. MORGAN-JONES................... 149
XXIX. Obstipospores onchecelaisgen. et sp. nov., ROBERT C.
SINCLAIR & G. MORGAN-JONES.. 152
Ajellomyces and its synonym Erronniella, MICHAEL R. McGINNIS &
BARRY KATZ.. 157
The genus Pseudogymnococcus, G. F. ORR................................ 165
A new species of Amanita, DAVID T. JENKINS.............................. 174
A new Amanita from Florida, DAVID T. JENKINS & JOANNE VINOPAL.. 177
Anamorph and teleomorph: terms for organs of reproduction rather
than karyological phases, L. K. WERESUB & G. L. HENNEBERT......... 181
Type studies in the genus Peniza. V. Species described by Rehm,
DONALD H. PFISTER.. 187
A new species of Stigmina on Beaucarnea (Liliaceae), F. G.
POLLACK & D. F. FARR... 193
The xanthochroic reaction in Aphyllophorales, ERAST PARMASO &
ILMI PARMASO... 199
Etude sur les champignons parasites du sud-est asiatique. 34.
Un nouveau genre, Cylindrocladiopsis (Moniliaceae), provoquant
une maladie de taches foliaires du Lagerstroemia in Malaisie,
JO-MIN YEN.. 233
Notice: Third International Mycological Congress...................... 238
Contribution to the lichen flora of Argentina XI. Lichens from
Cabo San Antonio, Buenos Aires Province, HECTOR S. OSORIO &
FELICIA R. D'ESPOSITO... 239
The genus Coprinus in western North America, Part II: section
Lanatuli, FRED VAN DE BOGART... 243
Corynascella inquinata, a new cleistothecial ascomycete from
sewage sludge, SHUN-ICHI UIDAGAWA & SEIICHI UEDA............ 292
Glomus gerdemannii sp. nov., SHARON ROSE, BARBARA A. DANIELS &
JAMES M. TRAPPE.. 297
Periconiella verrucosa sp. nov. (dematiaceous hyphomycetes) from
Douglas Fir wood, ELWIN L. STEWART & MALCOLM CORDEN.......... 302
Lectotypification of Physciona, a generic name based on a
mismamed type species – a new solution to an old problem,
ERIK GUNNERBECK & ROLAND MOBERG................................ 307
Revue des Livres, G. L. HENNEBERT..................................... 518

Paul R. MILLER & Hazel L. POLLARD; M. V. WIESE; CAPITAL SYSTEMS
GROUP, INC.; Georges A. LAFUENTE; Marcel V. LOCQUIN; Olle PERSSSON
No. 2 April-June 1979

Caloneotria and its type species, C. dalziniaca, a later synonym of C. pyrochroa, AMY Y. ROSSMAN.. 321

The species problem in the Peathyrella candolleiana complex, M. C. GALLAND, R. F. O. KEMP & M. K. JURAND.. 329

Type studies in the genus Peniza.
VI. Species described by C. H. Peck, DONALD H. PFISTER... 333

VII. Miscellaneous species described by M. J. Berkeley and M. A. CURTIS, DONALD H. PFISTER... 339

Entrophospora, a new genus in the Endogonaceae, R. N. AMES & R. W. SCHNEIDER... 347

Type studies: some Cortinarius and Tricholoma species described by Charles Horton Peck, JOSEPH F. AMMIRATI & CLARK L. OVRBOE...................................... 353

Studies on the Dimargaritaceae (Mucorales) II. A new Dispira parasitic on ascomycetous hosts, P. C. MISRA & KANCHAN LATA............................. 372

Apophysomyces, a new genus of the Mucorales, P. C. MISRA, K. J. SRIVASTAVA & KANCHAN LATA.. 377

An orthographic correction, LIBERO AJELLO & ARVIND A. PADHYE.. 383

Mycoflora Saximontanensis Exsiccata
Centum XVI, W. G. SOLHEIM.. 385
Centum XVII, W. G. SOLHEIM & GEORGE B. CUMMINS.. 395

Notes on hypomycetes.
XXX. On three species of Idriella, G. MORGAN-JONES... 402

XXXI. Chaetopsis auburnensis sp. nov., G. MORGAN-JONES... 411

Folicolous ascomycetes: 3. The stalked capnodiaceous species, DON R. REYNOLDS... 417

Studies on the Lepiotaceae of the Pacific Coast region. I.
Two new species, HELEN V. SMITH & WALTER J. SUNDBERG... 446

Notes on Collybia. I. Collybia alkaliivirens, ROY E. HALLING... 453

Recule de Cordyceps intermedia dans les Pyrénéées Atlantiques, espèce nouvelle pour l'Europe, FRANCOISE CANDOUSHU... 459

Clathrus ruber in California and worldwide distributional records, WILLIAM R. BURK... 463

Pisolithus tinctorius, a pavement breaker in southern California, WILLIAM R. BURK & GEORGE F. LUPONE... 469

Acaulospora bireticulata sp. nov., FREDERICK M. ROTHWELL & JAMES M. TRAPPE... 471

First authenticated North American record of Monilinia fructigena, with notes on related species, LEKH R. BATRA... 476

A preliminary account of the taxa described in Caloneotria, AMY Y. ROSSMAN... 485

New combinations in Rhizoplaica for endemic American species of Lecanora Auctt., WILLIAM A. WEBER... 559

Revue des Livres, G. L. HENNEBERT... 561

SOCIEdAD DE CIENCIAS NATURALES AZARANDI; Orson K. MILLER

Author INDEX... 562

MYCOTAXON publication dates, 7(3) and 8(1)... 563

Errata, volumes 7 and 8... 564

Reviewers... 564

INDEX to Fungous and Lichen Taxa... 565

Colored plate... facing page 464
CALONECTRIA AND ITS TYPE SPECIES, C. DALDINIANA,
A LATER SYNONYM OF C. PYROCHROA

AMY Y. ROSSMAN*

Plant Pathology Herbarium, Cornell University
Ithaca, New York 14853 USA

SUMMARY

The monotype species of Calonectria de Notaris, C. daldiniana,
is described and illustrated from the holotype specimen. This
species is found to be a later synonym of C. pyrochroa. The
genus Calonectria is circumscribed to include only those nec-
trioid species with an ascocarp wall structure like that of
C. pyrochroa and a Cylindrocladium anamorph. Calonectria
pyrochroa and its Cylindrocladium anamorph, grown from Macar-
oneesian collections, are described and illustrated.

Within the Hypocreales the genus Nectria occupies a cen-
tral position from which allied genera have been segregated,
often based on only one character. Although the type of
Nectria, N. cinnabarina Tode ex Fries, does occasionally have
multiseptate ascospores, Nectria has traditionally included
species with one-septate ascospores. Species with aseptate
ascospores have been placed in Pseudoneectria and those with
multiseptate ascospores in Calonectria and Ophioneectria. As
a result these genera have become the repository of unrelated
species.

In an attempt to define natural groups within the genera
related to Nectria, type specimens of described taxa have been
examined. Rossman (1977) has restricted the genus Ophione-
tria to the type species, O. trichospora, excluding all other
previously described species. Despite the long, multiseptate
ascospores, O. trichospora is closely related to Nectria in
ascocarp morphology and cultural characteristics. The genus
Calonectria was erected for a species which has multiseptate
ascospores and is differentiated from Ophioneectria by asco-
spores with a length-width ratio of less than 10:1 (Rogerson,
1970). Recently Samuels (1978) has included species with
multiseptate ascospores in the genus Nectria, thereby placing
related species in "groups" within Nectria sensu lato.

Although over 200 species of Calonectria have been de-
scribed, the monotype species, C. daldiniana, has not been
examined, redescribed or illustrated since the original de-
scription published in 1867. Because requests for this spec-

*Presently the Anna E. Jenkins Postdoctoral Fellow.
Fig. 1. *Calonectria daldiniana* Holotype (RO). A. X-section of ascocarp x 140. B. Detail of ascocarp wall x 560.

imen to numerous Italian herbaria had been negative, the type specimen of *C. daldiniana* was thought to be lost. After an examination of the type specimens of taxa described in *Calonectria*, it became imperative to determine whether or not the type of *C. daldiniana* was lost or destroyed, and if so, how the species should be neotypified.

Calonectria daldiniana was described in one of the last works of de Notaris (1867) published after he had come to Rome to become a Senator. In his paper the species is cited as part of "Sfer. ital. cent. II. mss.," a work that was never completed. During the summer of 1978, Dr. Gary Samuels, Division of Scientific and Industrial Research, Auckland, New Zealand, and I visited many herbaria in northern Italy searching for the missing type specimen which was finally located in Rome. Although the bulk of the specimens at RO* are those of Cesati, who worked closely with de Notaris, the rather scanty type specimen of *C. daldiniana* is housed in the smaller, general mycological herbarium. In my taxonomic judgement the type specimen of *C. daldiniana* is identical with type specimens of *Neotria pyrochroa*, an earlier epithet. Because later mycologists may not agree with this judgement and because the type and only specimen of *C. daldiniana* is in poor condition and not readily available, this specimen is described below and illustrated in figures 1 & 2.

Abbreviations of herbaria are those of Holmgren & Keuken (1974).
Calonectria daldiniana de Notaris, 1867.
(Figs. 1-2)

Holotype: ITALY, su foglie sternate di *Magnolia grandiflora* a Locarno, Daldini.

ASCOCARPS solitary, superficial, red-orange, "scarlet"* to light bay," turning "red," rose-purple, in 2% KOH, reaction reversing when acidified, ovoid, 350-420 x 300-350 μm; erumpent through leaf surface, darkened around the base leaving a spot on leaf 150-200 μm diam; collapsed collabent, laterally or not at all; many ascocarps broken, fractured longitudinally or recessed through leaf epidermis, probably due to tight stacking when stored; ostiole present, apex sometimes darker, papillae slightly pointed to none, ascocarp wall appearing slightly scurfy.

ASCOCARP WALL composed of two intergrading regions: the inner 1-2 layers of hyaline, thin-walled cells, elongate parallel to the centrum; the outer layers of cells with thickened walls, elongate, becoming larger and more globose toward the outside, eventually forming textura angularis; outermost cells globose, 12-30 μm diam, walls up to 2 μm thick, sloughing off to form a granular scurf.

ASCII unitunicate, broadly clavate, 70-75 x 25-28 μm, thin-walled to evanescent, apex undifferentiated. No evidence of paraphyses but amorphous strands present, remnants of apical paraphyses.

ASCOSPORES narrowly-fusiform with rounded ends, straight, curved or sigmoid, 46-61 x 5-6 μm, 3-septate, hyaline to slightly yellow with age, generally loose in the ascocarp.

The specimen consists of three leaf fragments one of which has a rectangular portion removed suggesting that an isotype may exist. The leaves are partially skeletonized, obviously in an advanced state of decay. Of the approximately fifty ascocarps, many are overmature or disintegrating with only the bottom part of the ascocarp remaining. No evidence of a *Cylindrocladium* anamorph was found on this rather overmature specimen. Differences in the description of this specimen and that of the species *Calonectria pyrochroa* are greater variation in size and shape of ascocarps, ascii and ascospores in *C. pyrochroa* and the only slight development of scurf on the ascocarps of the specimen of *C. daldiniana*.

Ascocarps superficial, red-orange to dark-umber, turning purplish in KOH, reaction reversing when acidified. Ascocarp wall composed of two intergrading regions: the inner layers of hyaline textura porrecta with cells elongate parallel to the centrum; the outer layers of textura angularis to textura globulosa toward the outside, cell walls thin to thickened, pigmented. Ascii unitunicate, evanescent at maturity, apex undifferentiated. Ascospores elliptic to fusiform, one to multisep tate. Anamorph *Cylindrocladium*.

Holotype species: *Calonectria daldiniana* de Notaris, a later synonym of *Nectria pyrochroa* Desm.

Colors in quotes are based on Rayner (1970).
Fig. 2. *Calonectria daldiniana* Holotype (RO). Ascospores x 1000. Fig. 3. *Calonectria pyrochroa* (CUP-MM 2407). Ascus and ascospores x 1000.
Calonectria pyrochroa (Desm.) Sacc., Michelia 1:308. 1878. [Figs. 1-4]
≡ Nectria pyrochroa Desm., Pl. Crypt. France Ed. 2 (2) #372. 1856.
≡ Nectria leguminum Rehm, Hedwigia 39:221. 1900.

ASCOCARPS solitary, superficial, erumpent through and firmly adhering to leaf surface, globose to ovoid, 300-410 × 320-380 µm, collabent or collapsing laterally or not at all when dry, red-orange to dark-red, "scarlet" to "bay", turning "red", rose to purple in 2% KOH, reaction reversing when acidified, often with a white to yellow cast due to the scurfy outer wall; papillae indistinct to small, pointed, often darker; ostiole present; ascocarps erumpent through epidermis, leaving base immersed in substrate, the base and surrounding host tissue sometimes becoming darkened and leaving a dark-rimmed spot when the ascocarp disintegrates or becomes detached.

ASCOCARP WALL composed of two intergrading regions: the inner layers of hyaline, thin-walled cells elongate parallel to the centrum; the outer layers of textura angularis becoming textura globulosa toward the outside, outer cells globose, large, 20-35 µm diam, walls pigmented, slightly thickened, up to 1.5 µm, outermost cells only loosely adhering to the ascocarp and forming an irregularly-distributed scurf; rarely with long, straight, sparsely scattered, septate hairs developing from the small, outer cells 10-12 µm diam, hairs 127-179 × 7-8 µm at base, walls thickened up to 2 µm, pigmented, occasionally branched, tapering gradually to an acuminate apex.

ASCI unitunicate, broadly obovate to clavate, thin to evanescent at maturity, 64-90 × 17-25 µm, without any specialized apical apparatus, sometimes with a short stalk on young asci. Apical paraphyses present in young ascocarps but disappearing at maturity.

ASCOSPORES narrowly-fusiform with rounded ends, often curved or sigmoid, 40-70 × 4-7 µm, 1- to 3-septate, rarely 5- or 7-septate, hyaline, sometimes slightly constricted at each septum, smooth or becoming minutely roughened, contents granular, eight parallel spores per ascus.

ANAMORPH: Cylindrocladium sp.

SPORULATING BRANCHES erumpent through epidermis forming a black-rimmed spot, or occasionally at base of ascocarp; arising from substrate surface or, in culture, from pigmented hyphae at surface of colony; branching one to four times, monopodial or opposite, branches 5-6 µm diam, with a septum at the base of each branch.

CONIDIigenous CELLS phialidic, without a collarette or flared opening, 8-20 × 2.5-3.5 µm.

CONIDIA cylindric with truncate-rounded ends, 1- to 3-septate, hyaline, 39-60 × 4-6 µm.
Fig. 4. *Cylindrocladium* anamorph of *Calonectria pyrochroa* (CUP-MM 2407). Conidiophorous branches, apical vesicles and conidia x 1000.
APICAL VESICLES borne on long, upright stalks branching below or at the level of the conidiophorous branches, extending beyond the tips of the conidia, stalk 150-190 μm long, vesicles ovate, clavate to subglobose, ultimate cells 25-65 x 5-6 μm at base, becoming 7-9 μm broad at apex.

CULTURAL CHARACTERISTICS: Ascospores germinate overnight on CMD* forming 1 to 3 germ tubes; colony diameter, after 3 days, on CMD, MA* and PDA* 0.8-0.9 cm; after 10 days, CMD 3.8 cm, PDA 3.3 cm, MA 2.1-2.3 cm; on CMD, aerial mycelium lacking or sparse, colony becoming "orange" to "sienna;" on MA, white, aerial mycelium, profuse sporulation, colony "sienna" to "umber;" on PDA, abundant, thick, white to "orange" hyphae, sporulation only at margin of colony, submerged mycelium "orange" to "umber." Conidia developing on all media tested after 3 days; vegetative hyphae frequently branched, contorted, 3-7 μm diam.

HABITAT: On rotting leaves, usually on the lower surface, rarely on decaying twigs and woody pods; often in wet areas such as dense forest understory, seepages and streams; known from Acacia sp., Hedera helix, Magnolia grandiflora, Pittosporum undulatum, Platanus sp. and unidentified Lauraceae.

DISTRIBUTION: Tropical and warm temperate regions; known from the Azores, Brazil, France, Italy, Jamaica, Madeira and Portugal.

LECTOTYPE: France. In foliis emortuis Platani. Autumno. Desm., Pl. Crypt. France Ed. 2 (2) #372. The specimen at BPI is here designated as the LECTOTYPE. Isolectotypes of the same exsiccati number from BR and UPS were also examined.

*CMD-Difco Corn Meal Agar + 0.2% Dextrose, MA-Difco Malt Agar, PDA-Difco Potato Dextrose Agar.
The genus *Calonectria*, as defined herein on the basis of ascocarp morphology and anamorph, is closely related to *Nectria*. The ascocarp is similar in structure to that of *Nectria haematococca* Berk. & Br. [Anamorph: *Fusarium solani* (Mart.) Sacc.] and *Ophiionectria trichospora* (Berk. & Br.) Sacc. [Anamorph: *Antipodium spectabile* Piroz.]. The *Cylindrocladium* states of *Calonectria* species are phialidic with elongate, septate conidia as in *Fusarium* and *Antipodium* but the conidia of *Cylindrocladium* have truncate-rounded ends, rather than a foot cell or apical beak. *Cylindrocladium* species also have a peculiar, apical vesicle borne on a long, sterile filament associated with each conidial head. One species of *Calonectria*, *C. retaeadii* (Bugnicourt) Booth, has an anamorph similar to *Cylindrocladium* but lacks the apical vesicle and is placed in *Cylindrocarpon*, a genus which includes the anamorphs of several *Nectria* species.

As can be seen from the above synonymy, the correct name for the type species of *Calonectria* is *C. pyrochroa*. Of the species previously described in *Calonectria*, the species with *Cylindrocladium* anamorphs have morphologically similar teleomorphs. Many *Calonectria* species having *Cylindrocladium* anamorphs are known as plant pathogens on a variety of hosts causing diseases of conifer and peach seedlings, a root and foliar rot of tea and black rot of peanuts. Seven species with known *Cylindrocladium* anamorphs exist in the literature; they are all quite similar to *Calonectria pyrochroa* differentiated by ascosporal and conidial size and septation. Older names of *Calonectria* species for which the anamorphs are not yet known may provide earlier epithets for these pathogenic species.

ACKNOWLEDGEMENTS

I sincerely acknowledge the generous assistance of Dr. Richard P. Korf in providing the opportunity to collect in Jamaica (NSF Grant #GB-8548) and in Macaronesia (NSF Grant #DEB 75-23557) and the Cornell Plant Pathology Herbarium for supporting me as the Anna E. Jenkins Postdoctoral Fellow throughout this study. I thank all the curators and their assistants at numerous Italian herbaria who patiently endured our Italian in order to help search for the missing specimen.

LITERATURE CITED

THE SPECIES PROBLEM IN THE PSATHYRELLEA CANDOLLEANA COMPLEX

M.C. GALLAND, R.F.O. KEMP and M.K. JURAND

Laboratoire de Mycologie associé au C.N.R.S. n° 44
Université Claude Bernard, 43 Boulevard du 11 Novembre 1918
69621 VILLEURBANNE France

and, Department of Botany
The king's Buildings, Mayfield Road - EDINBURGH EH9 3JH

Summary

Interfertility tests between a large number of collections from both the Old and New Worlds show that there are four breeding groups in the collective species Psathyrella candeliana.

Psathyrella candeliana (Fr.) Maire is considered to be a collective species by the morphologist but it is very difficult to distinguish between the component species. Two separate investigations have been carried out one by Galland (1) on isolates collected only in France and the other by Jurand (2) using European and American isolates. The isolates used by Galland were collected mainly in the Oise and Val-d'Oise Departments and were studied morphologically and determined by H. Romagnesi. In the second investigation both breeding tests and morphological studies were done by Jurand.

In the investigation of Galland four breeding groups were found after making interfertility tests between the isolates, (fig. 1). H. Romagnesi (3) has decided to give specific names to these as follows: P. candeliana (Fr.) Maire, P. scotospora Rom., P. elegans Rom. and P. proxima Rom.

The isolates studied by Jurand are listed in Fig. 2 and again there were four breeding groups. It was interesting to know if the four breeding groups were the same in the two studies. Representatives of each of the four breeding groups of both studies were mated and checked for clamp connections. The strains used and the results are shown in Fig. 3.

The tables show that P. candeliana has been found in several European countries and once in the U.S.A. It is the commonest of the four species in France and England. In contrast 15 of the isolates were of P. elegans. P. elegans has also been found in France, England and Finland. P. scotospora is so far only known from France. P. proxima has been found in France and once in the U.S.A.
Discussion

These studies show that *P. candolleana* should be considered as a collective or macrospecies consisting of four intersterile microspecies which are most easily identified by breeding tests. To the morphologist there might be fears that this splitting could be endless but these studies indi-

Fig. I - Strains studied by Galland, all collected by H. Romagnesi

<table>
<thead>
<tr>
<th>Cultures n°</th>
<th>Place of collection</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. candolleana (Fr. Maire)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>881</td>
<td>Luzarches (Val-d'Oise)</td>
<td>1966</td>
</tr>
<tr>
<td>886</td>
<td>"</td>
<td>1966</td>
</tr>
<tr>
<td>899</td>
<td>Forêt de Largue (Oise)</td>
<td>1966</td>
</tr>
<tr>
<td>943</td>
<td>Forêt d'Halatte (Oise)</td>
<td>1967</td>
</tr>
<tr>
<td>944</td>
<td>"</td>
<td>1967</td>
</tr>
<tr>
<td>964</td>
<td>Forêt de Compiègne (Oise)</td>
<td>1967</td>
</tr>
<tr>
<td>992 B</td>
<td>Luzarches (Val-d'Oise)</td>
<td>1968</td>
</tr>
<tr>
<td>994</td>
<td>Coye-la-Forêt (Oise)</td>
<td>1968</td>
</tr>
<tr>
<td>995 B</td>
<td>"</td>
<td>1968</td>
</tr>
<tr>
<td>996</td>
<td>Forêt d'Halatte (Oise)</td>
<td>1968</td>
</tr>
<tr>
<td>1002</td>
<td>Luzarches (Val-d'Oise)</td>
<td>1968</td>
</tr>
<tr>
<td>1034</td>
<td>Forêt de Compiègne (Oise)</td>
<td>1969</td>
</tr>
<tr>
<td>1035</td>
<td>Luzarches (Val-d'Oise)</td>
<td>1969</td>
</tr>
<tr>
<td>1036</td>
<td>"</td>
<td>1969</td>
</tr>
<tr>
<td>1041</td>
<td>"</td>
<td>1969</td>
</tr>
<tr>
<td>1044</td>
<td>Drancy (Seine-et-Marne)</td>
<td>1969</td>
</tr>
<tr>
<td>1051</td>
<td>Villers-Saint Frambourg (Oise)</td>
<td>1969</td>
</tr>
<tr>
<td>1071</td>
<td>Coye-la-Forêt (Oise)</td>
<td>1970</td>
</tr>
<tr>
<td>1075</td>
<td>Bois de Ver-sur-Launette (Oise)</td>
<td>1970</td>
</tr>
<tr>
<td>1085</td>
<td>Vauville (Manche)</td>
<td>1970</td>
</tr>
<tr>
<td>1165</td>
<td>Pontarmé (Oise)</td>
<td>1975</td>
</tr>
<tr>
<td>1173</td>
<td>Forêt de Compiègne (Oise)</td>
<td>1975</td>
</tr>
<tr>
<td>1174</td>
<td>"</td>
<td>1975</td>
</tr>
</tbody>
</table>

P. scotospora Rom.

<table>
<thead>
<tr>
<th></th>
<th>Place of collection</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>874</td>
<td>Paris (Seine)</td>
<td>1966</td>
</tr>
<tr>
<td>1032 A</td>
<td>"</td>
<td>1970</td>
</tr>
<tr>
<td>1032 B</td>
<td>"</td>
<td>1970</td>
</tr>
</tbody>
</table>

P. proxima Rom.

<table>
<thead>
<tr>
<th></th>
<th>Place of collection</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>876</td>
<td>Luzarches (Val-d'Oise)</td>
<td>1966</td>
</tr>
<tr>
<td>999 A</td>
<td>Forêt de Comelles (Oise)</td>
<td>1968</td>
</tr>
<tr>
<td>999 B</td>
<td>"</td>
<td>1968</td>
</tr>
<tr>
<td>999 C</td>
<td>"</td>
<td>1968</td>
</tr>
</tbody>
</table>

P. elegans Rom.

<table>
<thead>
<tr>
<th></th>
<th>Place of collection</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1029 A</td>
<td>Coye-la-Forêt (Oise)</td>
<td>1969</td>
</tr>
<tr>
<td>1029 B</td>
<td>"</td>
<td>1969</td>
</tr>
<tr>
<td>1073</td>
<td>Compiègne (Oise)</td>
<td>1970</td>
</tr>
<tr>
<td>1074</td>
<td>Bois de Ver-sur-Launette (Oise)</td>
<td>1970</td>
</tr>
</tbody>
</table>
cate that the four species are widespread and it is likely that further studies will only reveal one or two more species in this complex. This widespread distribution of four morphologically similar (but intersterile) species emphasises the fact that speciation in these agarics is an event affecting the cytoplasm during hyphae fusion and has nothing to do with the morphology of the fruit body. It would seem likely

Fig. 2 - Strains studied by Jurand

<table>
<thead>
<tr>
<th>Cultures n°</th>
<th>Place of collection</th>
<th>Year</th>
<th>Collector and n°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group II = P. candelleana</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Surrey, England</td>
<td>1968</td>
<td>3390 P.D.O.</td>
</tr>
<tr>
<td>136</td>
<td>Warwickshire, England</td>
<td>1970</td>
<td>575 S.P.</td>
</tr>
<tr>
<td>142</td>
<td>Turku, Finland</td>
<td>1971</td>
<td>8375 R.W.</td>
</tr>
<tr>
<td>146</td>
<td>Helsinki, Finland</td>
<td>1971</td>
<td>8561 R.W.</td>
</tr>
<tr>
<td>171</td>
<td>Kent, Ohio, U.S.A.</td>
<td>1972</td>
<td>2096 F.H.</td>
</tr>
<tr>
<td>304</td>
<td>C.B.S. Baarn</td>
<td>1933</td>
<td>Vandendries</td>
</tr>
<tr>
<td>330</td>
<td>C.B.S. Baarn</td>
<td>1939</td>
<td>Quintanilha</td>
</tr>
<tr>
<td>Group IV = P. scotospora</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>C.B.S. Baarn</td>
<td>1947</td>
<td>Pinto Lopes</td>
</tr>
<tr>
<td>Group III = P. proxima</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>Michigan, U.S.A.</td>
<td>1972</td>
<td>2217 F.H.</td>
</tr>
<tr>
<td>Group I = P. elegans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Cheboygan County, Michigan</td>
<td>1969</td>
<td>6609 R.W.</td>
</tr>
<tr>
<td>141</td>
<td>Herefordshire, England</td>
<td>1970</td>
<td>M.R.</td>
</tr>
<tr>
<td>145</td>
<td>Turku, Finland</td>
<td>1971</td>
<td>8412 R.W.</td>
</tr>
<tr>
<td>160</td>
<td>Michigan, U.S.A.</td>
<td>1972</td>
<td>81096 A.H.S.</td>
</tr>
<tr>
<td>161</td>
<td>"</td>
<td>1972</td>
<td>81097 A.H.S.</td>
</tr>
<tr>
<td>162</td>
<td>"</td>
<td>1972</td>
<td>81098 A.H.S.</td>
</tr>
<tr>
<td>163</td>
<td>"</td>
<td>1972</td>
<td>81099 A.H.S.</td>
</tr>
<tr>
<td>165</td>
<td>"</td>
<td>1972</td>
<td>81103 A.H.S.</td>
</tr>
<tr>
<td>166</td>
<td>"</td>
<td>1972</td>
<td>81112 A.H.S.</td>
</tr>
<tr>
<td>167</td>
<td>"</td>
<td>1972</td>
<td>1974 F.H.</td>
</tr>
<tr>
<td>168</td>
<td>"</td>
<td>1972</td>
<td>81113 A.H.S.</td>
</tr>
<tr>
<td>169</td>
<td>"</td>
<td>1972</td>
<td>204 R.N.</td>
</tr>
<tr>
<td>170</td>
<td>"</td>
<td>1972</td>
<td>208 R.N.</td>
</tr>
<tr>
<td>173</td>
<td>"</td>
<td>1972</td>
<td>A.H.S.</td>
</tr>
<tr>
<td>175</td>
<td>"</td>
<td>1972</td>
<td>81153 A.H.S.</td>
</tr>
<tr>
<td>176</td>
<td>"</td>
<td>1972</td>
<td>81156 A.H.S.</td>
</tr>
<tr>
<td>179</td>
<td>"</td>
<td>1972</td>
<td>2194 F.H.</td>
</tr>
</tbody>
</table>

that these species are fairly recent in origin and have not yet accumulated many morphological differences. Now that the existence of four distinct breeding groups is known it may be possible to find additional characters, especially ecological ones which will aid in their identification.

My observations on operculate Discomycetes described by C. H. Peck and now referred to the genus *Peziza* are provided below. In cases where species have been recently commented upon in the literature, only the presently accepted name is listed and no further comments are made. Peck's use of the generic name *Peziza* conformed with that of many of his contemporaries, such as Ellis and Cooke; almost all Discomycetes, both members of the Helotiales and Pezizales, were included. The numerous species described under *Peziza* but which now prove to be members of the Helotiales are listed after the more detailed comments. All cited material has been examined.

Peck's publications as New York State Botanist appeared rarely and irregularly. In many cases title page dates are incorrect. The dates given below in parentheses are those listed by J. H. Barnhart (unpublished manuscript in Farlow Library). These are the earliest possible dates at which a given report, in one form or another, was distributed.

I wish to thank Harold J. Larsen, Jr., Richard P. Korf, and especially J. H. Haines for help and suggestions. Dr. Haines particularly provided information on collections from Peck's notebooks.

≡ *Humaria adusta* (Cooke & Peck) Sacc., Syll. fung. 8: 141. 1889.

Holotype: On burnt ground. West Albany, N.Y. July 1873. NYS.

≡ *Geopyxia amplispora* (Cooke & Peck) Sacc., Syll. fung. 8: 71. 1889.

Isotype: On ground. New York State. NYS.

This is a true *Peziza* with amyloid asci but it cannot be distinguished from *P. micropus* Pers. ex Pers.

Holotype: Sandy soil. California. W. R. Dudley NYS.

Though Seaver (1928) placed this species in the synonymy of Peziza venosa Pers. (= Disciotus venosa (Pers.) Boud.), my studies of the type specimen show this to have amyloid asci. The spores are smooth. This seems close to or identical with Peziza vesiculosa.

Peziza (Humaria) delicata Peck, Rep. New York State Mus. 30: 61. 1878.
≡ Humaria delicata (Peck) Sacc., Syll. fung. 8: 123. 1889.
≡ Leucoloma delicata (Peck) House, Bull. New York State Mus. 243-244: 86. 1921.

Holotype: Dead stems of herbs lying on the ground. Bethlehem, Albany County, N.Y. September 1876. NYS.

This is a species of Iodophanus. It seems most like I. testaceus (Moug. in Fr.) Korf as treated by Kimbrough, Luck-Allen, and Cain (1969).

Holotype: Ground and decayed wood. Ithaca, N.Y. October. Dudley. NYS.

Morphologically this is identical to Sarcoseypha cocinea as was concluded by Kanouse (1948) who treated it under Plectania cocinea.

≡ Humaria echinosperma Peck ex Sacc., Syll. fung. 8: 130. 1889
≡ Leucoloma echinosperma (Peck ex Sacc.) House, Bull. New York State Mus. 243-244: 86. 1921.

Holotype: Damp ground in pastures. West Albany, N.Y. June. NYS.

This is Lamprospora crec'hqueraultii (Cr. & Cr.) Boud. It was treated as a synonym of that species by Seaver (1928). John Haines informs me that in his notebook Peck wrote the following comment by M. C. Cooke: "A good species, but bad name."

≡ Humaria gallinaeae (Peck) Sacc., Syll. fung. 8: 63. 1889.
≡ Leucoloma gallinaeae (Peck) House, Bull. New York State Mus. 243-244: 86. 1921.

This specimen (Partridge dung. Oneida, N.Y. July. Warne) has not been located in the New York State Museum. From the description it seems likely that this is a Coprotus species. Seaver (1928) treated it as Ascophanus gallinaeae (Peck) Seaver.

Peziza hesperidea Cooke & Peck, Grevillea 1: 5. 1875.
≡ Geopyxis hesperidea (Cooke & Peck) Sacc., Syll. fung. 8: 63. 1889.

Holotype: Amongst leaves. Goat Island, near Niagara Falls, N.Y. NYS.

Seaver (1928) and Kanouse (1948) treated this as a synonym of Plectania occidentalis (Schw.) Seaver which is now considered a Sarcoseypha.

Type material (On dung of some wild animal, Catskill Mountains, July) could not be located in NYS.

= Humaria hydrophila Sacc., Syll. fung. 8: 140. 1889 (ut "Peck").
= Leucoloma hydrophila (Sacc.) House, Bull. New York State Mus. 243-244: 86. 1921 (ut "(Peck) House").
= Pilopecia hydrophila (Sacc.) Seaver, N. Amer. Cup-fungi (operculates) p. 106. 1928 (ut "(Peck) Seaver").

Earlier (1973b) I stated that this was a Peziza, but now after examining a number of Peziza species I cannot justify its placement in Peziza. It is a species of Pachyella which is close to P. punctispora Pfister. The new combination Pachyella hydrophila (Sacc.) Pfist. comb. nov. (basionym Humaria hydrophila Sacc., Syll. fung. 8: 140. 1889 = Peziza hydrophila Peck, a later homonym) is proposed.

In both Pachyella punctispora and this species the gelatinous material of the medullary excipulum and outer excipulum is scanty and is not easily seen in dried material. Peck's species differs from other Pezizas in the presence of this gelatinous excipular material, the presence of textura intricata in the medullary excipulum, and the formation of short pigmented hyphoid excipular hairs. These excipular hairs are not arranged in a palisade layer; in this feature Peziza hydrophila Peck agrees with Pachyella punctispora. In addition, both species have very densely pigmented paraphyses and ornamented ascospores. They differ only critically. In the holotype of P. hydrophila the wide paraphyses (which reach a diam of 15 µm) and the very faintly ornamented ascospores separate it from known collections of P. punctispora in which the paraphyses are narrow (under 9 µm in diam) and the ascospores are more prominently marked (see Pfister 1975).

= Psilopezia delicata (Peck) Seaver fide Pfister (1973a).

Holotype: Ground in a cellar. Maine. June. F. L. Harvey. NYS. The type collection agrees in all aspects with Peziza domiciliana Cooke. Seaver (1928) had previously treated it as a synonym of P. domiciliana.

= Pachyella orbicularis (Schw.) Le Gal fide Pfister (1973).

= Geopyxis pallidula (Cooke & Peck) Sacc., Syll. fung. 8: 70. 1889.
Isotype: On old beech wood. Croghan, N.Y. September. NYS. If one follows Svrek's treatment of the smooth-spored and related
species of *Peziza*, *P. pallidula* seems indistinguishable from *P. arver-nensis* Boud. (= *P. sylvesteris* (Boud.) Sacc. & Trav.). *Peziza pallidula* is the older name but there appears to be a species complex involved. In the specimen in NYS all the spores seen were eguttulate. Cooke (1879) stated that some spores were biguttulate.

≡ *Sepultaria pelllita* (Cooke & Peck) Seaver, N. Amer. Cup-fungi (operculates) p. 152. 1928.

Holotype: Thin soil covering rocks. Lower Ausable Falls, Essex County, N.Y. Adirondack Mountains. July. NYS.

This is a member of the genus *Sepultaria*. At present the species concepts within the genus do not allow the placement of this species.

Holotype: Burnt ground. Top of the Hudson Highlands, N.Y. June.

This is *Geopyxis carbonaria* (Alb. & Schw. ex Pers.) Sacc.

Holotype: Decaying wood and bark of ash trees, *Fraxinus sambuci-folia*. Sandlake, Rensselaer County, N.Y. May. NYS.

This is a smooth-spored species of *Peziza* which seems indistinguishable from *P. ampliata* Pers. ex Pers.

The following are species described in *Peziza* which are members of the Helotiales. Most were treated by Seaver (1951). Synonyms are listed in parentheses following the Peck name.

Peziza balaericola Peck (≡ *Tapesia balaericola* (Peck) Sacc.).

Peziza capitata Peck (≡ *Trichopeziza capitata* (Peck) Sacc., = *Dasyosyphus capitata* (Peck) Le Gal); *Peziza cariosa* Peck (≡ *Pyrenopeziza cariosa* (Peck) Sacc.); *Peziza chamaeleonitina* Peck (≡ *Dasyosyphus chamaeleonitina* (Peck) O. Kuntze); *Peziza comeola* Cooke & Peck (≡ *Heterosphaeria linariae* (Rab.) Rehm fide Sacc., Syll. fung. 8: 776. 1889); *Peziza corrugata* (≡ *Durella corrugata* (Cooke & Peck) Sacc.).

Peziza distinta Peck (≡ *Trichopeziza distinta* (Peck) Sacc.).

Peziza enterochroma Peck (≡ *Ombrophila enterochroma* (Peck) Sacc.,
Kriegeria enterochroma (Peck) Seaver.

Peziza floriformis Peck (= Pectizella floriformis (Peck) Sacc.).

Peziza kalmiae Peck (= Penicula kalmiae (Peck) Sacc.).

Peziza lacerata Cooke & Peck (= Pyrenopeziza lacerata (Cooke & Peck) Sacc.).

Peziza longipes (= Phialea longipes (Cooke & Peck) Sacc.).

Peziza longipila Peck (= Dasysepypha longipila (Peck) Sacc.), = Trichopeziza relicina (Fr.) Raitv. in Haines 1974; Peziza luteodisca Peck (= Dasysepypha luteodisca (Peck) Sacc.); Atractobolus luteodiscus (Peck) O. Kuntze.

Peziza myricacea Peck (= Trichopeziza myricacea (Peck) Sacc.).

Peziza pinastri Cooke & Peck (= Mollisia pinastri (Cooke & Peck) Sacc.), = Cenangium acumin Cooke & Ellis); Peziza planodisca Cooke & Clint. (= Pestizella planodisca (Cooke & Clint.) Sacc.), = Hymenoscyphus planodisca Lindau in Engler & Prantl, = Helotium planodiscum (Peck & Cooke) White.

Peziza scripina Peck (= Mollisia scripina (Peck) Sacc.).

Peziza singularis Peck (= Mollisia singularis (Peck) Sacc.), = Pseudopeziza singularis (Peck) Davis); Peziza solenia Peck (= Solenopeziza solenia (Peck) Sacc.), = Dasysepypha solenia (Peck) Dennis, = Lachnella solenia (Peck) Seaver, = Belonidium solenia (Peck) Raitv.); Peziza spharella Peck & Clint.; Peziza subatra Cooke & Peck (= Pyrenopeziza subatra (Cooke & Peck) Sacc.); Peziza subhymenacea Cooke & Peck (= Phialea subhymenacea (Cooke & Peck) Sacc.), = Hymenoscyphus subhymenacea (Cooke & Peck) O. Kuntze, = Helotium destructor White); Peziza subinerea Cooke & Peck; Peziza subochracea Cooke & Peck (= Trichopeziza subochraceae (Cooke & Peck) Sacc.), = Lachnella subochracea (Cooke & Peck) Seaver, = Calycella subochracea (Cooke & Peck) Dennis); Peziza sulphurella Peck (= Dasysepypha sulphurella (Peck) Sacc.), a synonym of Dasysepypha cruciferus (Phill.) Sacc. according to Seaver (1951) and Dennis (1962).

Peziza tetraonalis Peck.

Peziza thaliatree Peck (= Pyrenopeziza thaliatree (Peck) Sacc.).

Peziza tiliae Peck (= Dasysepypha tiliae (Peck) Sacc.), = Cyphella tiliae (Peck) Cooke, = Lachnella tiliae (Peck) W. B. Cooke); Peziza typhae Peck.

Peziza urticina Peck (= Trichopeziza urticina (Peck) Sacc.), = Dasysepypha grevillei (Berk.) Massee fide Dennis 1965.

Peziza viridicoma Cooke & Peck (= Tapesia viridicoma (Cooke & Peck) Sacc.); Peziza viridicoma Peck (= Trichopeziza viridicoma (Peck) Sacc.), = Lachnella viridicoma (Peck) Seaver.

LITERATURE CITED

COOKE, M. C. 1879. Mycographia seu Icones Fungorum. Williams and Norgate, Covent Garden. 267 pp., 406 fig.

TYPE STUDIES IN THE GENUS PEZIZA. VII.
MISCELLANEOUS SPECIES DESCRIBED BY
M. J. BERKELEY AND M. A. CURTIS.

Donald H. Pfister

Farlow Reference Library and Herbarium of Cryptogamic Botany, Harvard University, Cambridge, Mass. 02138

Species of Peziza described by Berkeley and Curtis are listed below. In cases where specimens have recently been studied the resulting new combinations have been listed without comment. In other cases the results of my studies of specimens are included. In these instances complete specimen citations have been given. The Berkeley and Curtis Pezizas described from the United States North Pacific Exploring Expedition were previously covered in this series (Pfister, 1977).

I am again indebted to Drs. Richard P. Korf and Harold J. Larsen, Jr. for comments on the manuscript. The Director, Royal Botanic Gardens, Kew kindly lent specimens for study.

≡ Neottiella albo-tecta (Berk. & Curt. in Berk.) Sacc., Syll. fung. 8: 191. 1889.
Study of the specimen indicates that this is a member of the lichen genus Baeomyces.

Peziza brassicaea (Berk., Grevillea 3: 157. 1875.
≡ Penizella brassicaea (Berk.) Sacc., Syll. fung. 8: 283. 1889.
On dead cabbage stems. New England. Sprague. no. 5407. K.
Examination of the holotype shows that this is Pseudombrophila deerata (Karst.) Seaver. Annotations with the specimen show that Dr. J. A. Nannfeldt reached the same conclusion some years ago. The species is known from several localities in New England.

Peziza aemoricolor Berk., Grevillea 3: 151. 1875.
On human ordure. Car. Inf. no. 1748.
I have not seen a collection of this species nor have others in re-
cent years. It seems not to be available from K. It was not mentioned
by Kimbrough in his various papers on dung-inhabiting fungi. Seaver
(1928) placed this species questionably in the synonymy of *Ascophanus
ochraceus* (Cr.) Boud.

*Peziza crispa*ta Berk. & Curt. in Berk., J. Linn. Soc. London 10:
367. 1868.

Madagascar 4: 262. 1953.

Peziza cubensis Berk. & Curt. in Berk., J. Linn. Soc. London 10:
366. 1868.

≡ *Scutellinia cubensis* (Berk. & Curt. in Berk.) Gamundi, Contr.

Peziza decolorans Berk. & Curt. in Berk., Grevillea 3: 150. 1875.

On the ground. Alabama. Peters. no. 6059. FH-Curtis, K.

The asci of this small species are J+. The ascospores are biguttu-
late, 16 - 17 x 7 - 8 μm and are intricately marked with a series
of ridges and crests which form a pronounced, more or less incomplete re-
ticulum. The condition of the material does not allow proper study of
the apothecial anatomy. It was said to be white and then discolored
with age.

1868.

≡ *Aurophora dochmia* (Berk. & Curt. in Berk.) Rifai, Verh. K. Ned.
Akad. Wet. 11, 57(3): 52. 1968.

This is the type species of the genus *Aurophora* Rifai which is dis-
tinguished from *Phillipsia* by its fan-shaped apothecia and the presence
of a gelatinous matrix in the medullary excipulum. *Peziza himeoloides
Berk.* and *Peziza inaequalis* Berk. & Curt. in Berk. are said by Rifai
to be related.

Peziza elachroa Berk. & Curt. in Cooke, Mycographia p. 160. f. 274.
1879.

On earth amongst leaves. Cuba. C. Wright (? 410). K.

This species of *Peziza* shares a series of characters with several
other closely related species. The ascospores are brownish, ornamented
with rounded warts or ridges, and apiculate. In this collection the
ascospores are (15) 16 - 18 x 10 - 12 μm and ornamented with short, low
anastomosing ridges. The apiculi are up to 5 μm wide at their base and
up to 5 μm long. The portion of the holotype I examined is composed of
parts of two apothecia, the larger of them reaching a diam of about 0.5
cm. The sterile tissue of the apothecia is almost completely collapsed
but is darkly colored. The collection is said to have been "greenish"
when fresh. The apothecia are sessile.

There are four other species with which this species must be com-
pared: *P. apiculata* Cooke, *Aleuria reperta* Boud., *P. thonetti* Berk.,
and *Aleurina subapiculata* von H. All of these species form small apo-
thezia which were variously described as brownish to olivaceous. All
have ascospores with similar ornamentations and unfortunately none of
these species have been often collected. I have seen type material of
all of these but *A. reperta*.

Maleçon (1939) has discussed *Peziza apiculata*. A summary of his
description of that species (under the name *Aleuria apiculata*) follows:

Apothecia 8 - 18 mm broad, subturbinate-cupulate, "cannelle" or bister,
on wood of *Quercus*. Asci cylindrical, somewhat attenuated at the
base, 300 - 325 x 14 - 15 μm. J+. Paraphyses slender, 3 - 3.5 μm broad,
hyaline or lightly fuscescent. Ascospores ellipsoidal, remaining smooth and hyaline for a long time, at maturity apiculate and finely verrucose, perispore brownish. Spores without apiculus 17 - 20 x 9 - 10 \(\mu \text{m} \). Apiculus 3 - 3.5 x 2.5 - 6 \(\mu \text{m} \) high.

There is a collection from North America in FH which matches this description (on wood, Ocala, Fla., R. Thaxter, 1897-1898, det. E. J. Durand). In this material the hymenium was said to be olive.

For *Peziza apiculata* and *Aleuria reperta*, which Malençon concluded differed in its green color and larger ascospores (22 - 23 x 9 - 11 \(\mu \text{m} \) without the apiculus), he proposed a new section of the genus *Aleuria*, sect. *Auleurodiscina*.

Though *P. elachroa* was said to be greenish the spores are too small to be considered *A. reperta* and, though the spore dimension is within the general range of *P. apiculata* they are wider than those of *P. apiculata* and are marked differently. In *P. apiculata* the markings are always in the form of rounded warts with few, if any, anastomosing warts.

In *P. elachroa* the warts often anastomose and sometimes form an irregular incomplete reticulum.

The markings in *P. elachroa* most closely resemble those found in *P. thozetii* Berk. as redescribed by Rifai (1968). Nonetheless, the two differ in their spore size; the ascospores of *P. thozetii* measuring (20-) 23.5 - 26.7 x 9 - 11 \(\mu \text{m} \).

The fourth species involved, *P. subapiculata*, is known only from the type collection from Tjibodas, Java. In that collection the ascospores are 21 - 23 x 9.4 \(\mu \text{m} \) and have fairly prominent apiculi. In the holotype (FH) the asci are J-. The collection was described as dark olive brown to blackish and 5 - 7 mm broad. Other than the J- asci, this collection seems quite close to *P. thozetii*.

The rather poor condition of these collections makes anatomical comparisons difficult. Also it is difficult to judge if all the materials are fully mature. The key which follows may serve to tentatively distinguish these four species, but it should be pointed out that detailed studies of the species must be carried out when better materials become available. The interspecific variation is unknown at present.

1. Ascospores with long pointed apiculi, with isolated, rounded warts; on dead wood .. 2

1. Ascospores with ± blunt apiculi with anastomosing and elongated warts, on ground and associated with plant debris 3

2. Ascospores 17 - 20 x 9 - 10 \(\mu \text{m} \) (without apiculus) lateral walls prominently warted, disc brownish (perhaps dark olive), sessile .. *P. apiculata*

1. Ascospores 22 - 23 x 9 - 11 \(\mu \text{m} \) (without apiculus) disc olivaceous, substipitate .. *P. reperta*

3. Ascospores 16 - 18 x 10 - 12 \(\mu \text{m} \) (without apiculus)**. *P. elachroa*

3. Ascospores 23.5 - 26.7 x 9 - 11 \(\mu \text{m} \) (without apiculus) .. *P. thozetii*

Moravec's (1977) description of *Peziza apiculata* from Moravia is based upon another fungus, perhaps a *Thecotheus* species. I have seen a small portion of his material through the courtesy of Dr. Henry Dissing at the Institute for Sporeplanter, University of Copenhagen.

Peziza exasperata Berk. & Curt. in Berk., Grevillea 3: 152. 1875.

E. Barlaea exasperata (Berk. & Curt. in Berk.) Sacc., Syll. fung. 8: 112. 1889.

Lamprospona exasperata (Berk. & Curt. in Berk.) Seaver, N. Amer.
The asci of Peziza exasperata are diffusely J+ which would indicate that the species should be referred to the Pezizaceae. Seaver did not use this feature and therefore misplaced the species in Lamprospora (Pyronemataceae). The ascospores of P. exasperata are globose, 12 - 15 μm in diam and are marked with warts and ridges. In their size and ornamentation they most closely resemble Plicaria recurva (Berk.) Rifai. That species was described as reddish brown as was P. exasperata. Plicaria recurva was first described from Tasmania by Berkeley in 1860.

For comments on this species see Peziza dochmia.

For comments on this species see Peziza dochmia.

Peziza irrorata Berk. & Curt. in Berk., Grevillea 3: 150. 1875.
On soil. Texas. C. Wright no. 3138. FH-Curtis.
This is a true Peziza. The ascospores are broad ellipsoid to almost subglobose, uniguttulate, 12 - 14 x 8 - 9 μm, ornamented with distinct warts and ridges which are up to 2 μm high. Asci J+ at tip, 240 - 260 x 13 - 14 μm. Paraphyses somewhat indistinct, brownish by transmitted light, up to 6 μm broad. The apothecia in the type collection range from 0.5 - 1.5 cm in diam and are dull brown when dried. Little can be determined of the apothecial anatomy.

≡ Lamprospora lobata (Berk. & Curt. in Berk.) Seaver, Mycologia 8: 22. 1914, see also Dennis, Kew Bull. 3: 418. 1954.

Peziza microspora Berk. & Curt. in Berk., Grevillea 3: 150. 1875.
≡ Humaria microspora (Berk. & Curt. in Berk.) Sacc., Syll. fung. 8: 151. 1889.

≡ Pyronemella monilifera (Berk. & Curt. in Berk.) Sacc., Syll. fung. 8: 194. 1889.
≡ Sphaerospora monilifera (Berk. & Curt. in Berk.) Seaver, N. Amer. Cup-fungi (operculates) p. 47. 1928.

Tewari and Pant (1968) discuss some of the problems regarding this species. They describe an Indian collection of this species which they treat as Pyronemella monilifera. The status of Pyronemella is questionable as stated previously (Pfister 1978).

≡ Distina palmicola (Berk. & Curt. in Berk.) Sacc., Syll. fung. 8: 100. 1889.
The asci are J+, the ascospores are eguttulate with smooth, thick walls. The ascospores are 17 - 19 x 9 - 11 μm. The apothecia seen are
poorly preserved and it is impossible to discern any structural detail. The apothecium is about 2 cm diam.

Peziza petersii Berk., Grevillea 3: 150. 1875.

This species was treated by Seaver (1928) under the name _Peziza pus-tulata_. Rifai (1968) provides a detailed description of this _Peziza_.

≡_Macropodia pubida_ (Berk. & Curt. in Berk.) Sacc., Syll. fung. 8: 159. 1889.
≡_Jafnea fusisarca_ (Gerard) Korf, Nagaoa 7: 5. 1960, fide Korf.

Rooting into the soil, the particles of which it binds together.

Texas. C. Wright. no. 3145. K.

This is a small specimen of _Sarcoscypha occidentalis_. Masse (J. Linn. Soc. London 31: 509. 1896) said, "Has all the characters of _Stam-naria._"

≡_Ascebolus scatigenus_ (Berk. & Curt. in Berk.) Brumm., Persoonia Suppl. 1: 159. 1968.

Peziza sordescens Berk. & Curt. in Berk., Grevillea 3: 150. 1875.
≡_Geopxyis sordescens_ (Berk. & Curt. in Berk.) Sacc., Syll. fung. 8: 69. 1889.

On soil, over which a thin mycelium is spread which binds together the particles. New England. Murray. no. 5327. FH-Curtis, FH-Sprague. This appears to be _Otidea grandis_ (Pers.) Rehm.

Peziza spissa Berk., Grevillea 3: 152. 1875.

On the ground. Alabama. Peters. no. 6074. K.

The portion of the holotype examined consisted of a single poorly preserved apothecium which was barely mature. Spores are biguttulate 24 - 26 x 13 μm, and are marked with very low isolated warts. The paraphyses are light brown and about 5 μm in diam.

The material does not allow precise placement of this species but it seems likely that, despite its reported occurrence on soil, it is a species of _Pachyella_ close to _P. punotispora_ Pfister and _Pachyella hydrophila_ (Sacc.) Pfister. In these species characteristic gel is difficult to detect without special treatment (Pfister, 1973).

≡_Neotriella spraguei_ (Berk. & Curt. in Cooke) Sacc., Syll. fung. 8: 190. 1889.

On decayed wood. S. Paris, Maine (5325) (Sprague no. 268) [Aug. 1855].
Specimen designated as type by Le Gal 1959) K. Isotype FH-Curtis.

Of the three collections cited by Cooke in the original description (New England, Carolina, and Maine) Le Gal selected the Maine specimen as type. Le Gal examined this species and compared it with Galactinia luteorosella Le Gal and concluded that they differed in spore size and the form of the paraphyses. In my examination of this material I find that the spores are smooth, 14 - 18 x 8 - 10 μm, and eguttulate though occasionally they are irregularly guttulate with small refractive droplets. The material both at K and FH are so poorly preserved that it is impossible to study the excipulum. The species thus cannot be adequately placed yet its broad attachment to the substrate seems distinctive.

≡ Lachnea stictica (Berk. & Curt. in Berk.) Sacc., Syll. fung. 8: 177. 1889.
This is a member of the genus Scutellinia.

≡ Pseudoplectania stygia (Berk. & Curt. in Berk.) Sacc., Syll. fung. 8: 166. 1889.
Sides of moist banks amongst moss. Car. Inf. no. 2971. FH-Curtis.
This is Pseudoplectania nigrella (Pers. ex Fr.) Fuckel, according to Seaver (1928).

≡ Humaria subgranulata (Berk. & Curt. in Berk.) Sacc., Syll. fung. 8: 129. 1889.
Peziza subgranulata was originally described as follows: "Applanata, lutea, margine setis pallidis obsito; sporidiis granulatiss. On dung. Resembling P. granulata, Bull.; but in that the sporidia are smooth and .0006 inch long, in this granulated and .001 inch long."

Examination of Curtis specimens yields the following information:
Asci are diffusely J+, approximately 200 x 28 - 32 μm (the asci are badly collapsed). The ascospores are 24 - 27.5 x 14 - 17 μm and are marked with low lateral warts and larger polar warts. The warts have more or less parallel sides and flat tops.
This fungus is identical to Iodophanus granulipolaris Kimb. and provides an older name for it. The following combination is necessary: IODOPHANUS SUBGRANULATUS (Berk. & Curt. in Berk.) Pfister comb. nov. (basionym Peziza subgranulata Berk. & Curt. in Berk., J. Linn. Soc. London 10: 366. 1868).

≡ Lachnea texensis (Berk. & Curt. in Berk.) Sacc., Syll. fung. 8: 182. 1889.
≡ Lamprospora wrightii (Berk. & Curt. in Berk.) Seaver, Mycologia 6: 15. 1914.
≡ Octospora wrightii (Berk. & Curt. in Berk.) J. Moravec, Česká My-

There is some problem in the interpretation of this species which in part is due to selection of type specimens. Dennis and Itzerothi (1973) selected, from the two original specimens mentioned, the collection from Bodelwyddan, North Wales, on Amblystegia serpens. Later, Khare (1976) selected, as type, and described material collected by Charles Wright in Texas, deposited in FH-Curtis. This collection (According to Henry Dissing, personal communication) occurs on a different moss and represents a different taxon. Dennis and Itzerothi's interpretation of Peziza wrightii should be followed.

The following species are members of the Helotiales. Synonyms are listed in parentheses.

Peziza Agassizii Berk. & Curt. (= Lachnellula Agassizii (Berk. & Curt.) Dennis); Peziza alphitodes Berk. (=? Lachnum pygmaeum fide White in Litt.); Peziza andropogonis Berk. & Curt. in Berk. (= Belonium andropogonis (Berk. & Curt. in Berk.) Sacc.); Peziza arundinariae Berk. & Curt. in Cooke non Peziza arundinariae Berk. & Curt. in Cooke ex Peziza arundinariae Berk. & Curt. in Berk. & Curt. in Berk. (= Dasyscypha arundinariae (Berk.) Sacc.); Peziza atro-fusca Berk. & Curt. in Berk. (= Tapesia atro-fusca (Berk. & Curt. in Berk.) Sacc.).

Peziza crocina Berk. & Curt. in Berk. (= Calycella citrina (Hedw. ex Fr.) Quel. fide Dennis, 1954); Peziza crocicineta Berk. & Curt. in Berk. (= Chlorosplenium chlora (Schw.) Curtis in Sprague fide Dixon, 1974).

Peziza eustegiaeformis Berk. & Curt. in Berk. (= Belonium eustegiaeformis (Berk. & Curt. in Berk.) Sacc.); Peziza exarata Berk. (= Phialaea exarata (Berk.) Sacc.); Peziza exidiella Berk. & Curt. in Berk. (= Peziella exidiella (Berk. & Curt. in Berk.) Sacc.); Peziza extricata Berk. & Curt. in Berk. (= Pyrenopeziza extricata (Berk. & Curt. in Berk.) Dennis).

Peziza fimbriata Berk. & Curt. in Berk. (= Pseudoheotentum fimbriata (Berk. & Curt. in Berk.) Sacc.); Peziza fimbriifera Berk. & Curt. in Berk. (= Dasyscypha fimbriifera (Berk. & Curt. in Berk.) Sacc.); Peziza frauda Berk. & Curt. in Berk. (= Pyrenopeziza frauda (Berk. & Curt. in Berk.) Sacc.).

Peziza hypophylla Berk. & Curt. in Berk. (= Poccillum hypophyllum (Berk. & Curt. in Berk.) Sacc.).

Peziza illota Berk. & Curt. in Berk. (= Dasyscypha illota (Berk. & Curt. in Berk.) Sacc. = Dasyscypha brasiliensis (Mont.) Le Gal fide Dennis (1954)); Peziza inspera Berk. & Curt. in Berk. (= Lachnellula insperea (Berk. & Curt. in Berk.) Dennis).

Peziza melanopus Berk. & Curt. in Berk. (= a Hymenoscyphus species); Peziza miltophthalma Berk. & Curt. in Berk. (= an inoperculate discomycete).

Peziza pomicolor Berk. & Rav. in Berk. (= Trichopeziza pomicolor (Berk. & Rav. in Berk.) Sacc.); Peziza protrusa Berk. & Curt. in Berk. (= Pyrenopeziza protrusa (Berk. & Curt. in Berk.) Sacc.); Peziza puberula Berk. & Curt. in Berk. (= Dasyscyphus subauratus (Ellis) Dennis fide Dennis, 1963).

Peziza quisquiliarum Berk. & Curt. in Berk. (= Belonium quisquiliarum Berk. & Curt. in Berk.) Seaver).

Peziza rhaphidophora Berk. & Curt. in Berk. (= Dasyscyphus rhaphidophora (Berk. & Curt. in Berk.) Dennis); Peziza Ravenelli Berk. & Curt. in Berk. (= Unguiculariopsis ilicincola Rehm fide Seaver); Peziza Russelli Berk.
Peziza saccharifera Berk. (= Pseudohelotium sacchariferum (Berk.) Sacc.); Peziza scariosa Berk. & Curt. in Berk. (= Tapesia scariosa (Berk. & Curt. in Berk.) Sacc.); Peziza soleniiformis Berk. & Curt. in Berk. (= Pezizella soleniiformis (Berk. & Curt. in Berk.) Sacc.); Peziza stenostoma Berk. & Curt. in Berk., non Peziza stenostoma Mart. ex Fr. (= an inoperculate discomycete); Peziza taxodi Berk. (= Blitrydium taxodi (Berk.) Sacc.); Peziza tela Berk. & Curt. in Berk. (= Cyphella tela (Berk. & Curt. in Berk.) Massæe); Peziza translucida Berk. & Curt. in Berk. (= Pezizella vulgaris (Fr.) von H. fide Dennis, 1953).

Peziza umbilicata Berk. & Curt. in Berk., non Peziza umbilicata Pers., nec P. umbilicata Karst. (= Volutaria rufo-olivacea (Alb. & Schw. ex Fr.) Korf fide Dennis, 1963); Peziza ustalis Berk. & Curt. in Berk. (= Cenangium ustale (Berk. & Curt. in Berk.) Sacc.).

Peziza viridiventre Berk. & Curt. in Berk. (= Pezicula viridiventre (Berk. & Curt. in Berk.) Sacc.).

LITERATURE CITED

ENTROPHOSPORA, A NEW GENUS IN THE ENDOGONACEAE

R. N. AMES and R. W. SCHNEIDER

Department of Plant Pathology, University of California, Berkeley, California 94720

Fungal spores which closely resembled Glomus infrequens Hall (1977) were wet sieved from a celery field soil in California. However, the mode of spore formation is unlike any described for the genera of Endogonaceae (Gerdemann and Trappe, 1974). Initially, a vesicle similar to that of Acaulospora spp. (Gerdemann and Trappe, 1974; Ames and Linderman, 1976; Trappe, 1977) is formed but the spore develops inside the vesicular stalk rather than laterally. No hyphae have been observed within the vesicle or vesicular stalk to indicate the presence of two fungi. In all other respects, the spores matched G. infrequens as contained in the type collections of Hall (Hall #437, 1, and 30, DSIR, Auckland, N.Z.). Specimens from our collections were sent to I. R. Hall and J. M. Trappe for observation. Personal communications from them supported our view that G. infrequens was incompletely described and should be placed in another genus in the Endogonaceae. Therefore, we are describing the new genus, Entrophospora, with E. infrequens (Hall) Ames & Schneider comb. nov. as the type species.

Entrophospora infrequens is similar to Acaulospora spp. (Gerdemann and Trappe, 1974) in the shape and color of the spore-producing vesicle. Even the pointed projection frequently observed at the apex of the vesicle has been observed for E. infrequens. The spores, which form inside the stalk of the vesicle, remain enclosed by the expanded vesicular wall material even though the spore may become detached from the vesicle itself. Mycorrhiza formation has not been established with E. infrequens despite numerous attempts.

ENTROPHOSPORA Ames & Schneider, gen. nov.
Type species: Entrophospora infrequens (Hall) Ames &
Schneider comb. nov.

Azygosporas produced singly in soil by expansion within the stalk of the mother vesicle. Mother vesicle thin walled, dense white, becoming empty as contents are transferred to developing spore. Walls of vesicular stalk expand to accommodate spore, forming a clear outer membrane tightly appressed to the spore. Spore wall continuous except for funnel-shaped portion which extends into the mother vesicle and is closed by a thickened plug.

ETYMOLOGY: Greek, en (within), trophos (nourished or reared), and spora (spore), referring to the spore being reared within the vesicular stalk.

DESCRIPTION: Sporocarpia ignota. Azygosporae singillatim in terra ortae, crescens quaeque hyphali in cellula, lev nec ramosa, quae in vesicula subglobose terminatur vel ellipsoidea sive obovoida 126-214 x 157-227 μm diametro. Vesiculae, densa primo albae materia, paulatim in adolescentem sporam exhaustae. Sporae principio albae, deinde obscure luteae vel brunneae, 69-183 (-225) x 69-164 μm diametro, subglobosae vel ellipsoidae, tunica hyalina stipitis vesicularis inclusae, quae 2.5-10.0 μm crassitudinis habet. Eis tunica simplex, ut videtur, spinis (sive digitis) vacuis et 2.5-5.0 μm longitudine extentis, spissis ac perpetuis excepto poro qui forma fundibuli vesiculam init et densa tunicae materia occlusus est. Interiorum sporae materiam exilis membrana continet. Quomodo sporae germinent, utrum mycorrhizae formentur, adhuc ignotum.

Sporocarps unknown. Azygosporas produced singly in soil by expansion within a smooth, unbranched hyphal cell that terminates in a subglobose to ellipsoidal or obovoid vesicle, 126-214 X 157-227 μm diam.; vesicle contents dense white, emptying as the spore develops. Spores white
Fig. 1. (A-D) Fresh specimens mounted in water, X 160. (A) Vesicle prior to spore formation. (B) Developing spore within vesicular stalk. (C) Young spore and vesicle. (D) Mature spore with attached empty vesicle. (E-F) Squashed spore mounted in water, X 800. (E) Optical cross section showing vacuolated projections of inner spore wall and clear outer membrane. (F) Surface view of inner spore wall.
Fig. 2. Spore in lactophenol showing funnel shaped connection from spore to vesicle with thickened plug, X 320.
at first, becoming dull orange to brown, 69-183 (-225) \times 69-164 \mu m \text{ diam.}, subglobose or ellipsoid. Spore enclosed by hyaline wall of vesicular stalk 2.5-10.0 \mu m \text{ thick}; spore wall apparently one layer with vacuolated spines, 2.5-5.0 \mu m \text{ long}, continuous except for funnel-shaped connection to the mother vesicle which is plugged with thickened wall material. Spore contents of variably sized oil globules enclosed by a thin, separable membrane. Method of spore germination undetermined. Mycorrhiza formation unknown. Vesicle and vesicular wall around spore stain blue with .05\% trypan blue in lactophenol. No reaction in Melzer's reagent.

DISTRIBUTION AND HABITAT: *E. infrequens* was originally reported from New Zealand by Hall (1977). We observed it from two celery fields in the central California coast area and as a contaminant in a pot culture of *Glomus mosseae* (Nicol. & Gerd.) Gerdemann & Trappe from Oregon State University. C. Walker at Iowa State University (personal communication) found *E. infrequens* in soil under poplar trees (*Populus* sp. L.) and from soils cropped with soybean and corn in Iowa, Illinois, and Wisconsin.

MYCORRHIZAL ASSOCIATIONS: We have failed to establish mycorrhizae in pot culture using several different hosts. In other tests, trap tubes similar to those used by Ames and Linderman (1977) were inoculated with surface-sterilized spores and planted with strawberry for mycorrhiza establishment. *Glomus mosseae* and *Gigaspor a margarita* Becker & Hall readily formed mycorrhizae under these conditions but *E. infrequens* did not.

COLLECTIONS EXAMINED: TYPE: NEW ZEALAND, Leith Saddle, Hall #437. PARATYPES: NEW ZEALAND, Long Bush, Hall #1, House Road, Akatore Forrest, Hall #130. Type and paratype specimens are deposited with the Herbarium, Plant Diseases Division, Dept. of Scientific and Industrial Research (DSIR), Auckland, New Zealand. Our collections are deposited in the herbaria of Oregon State University (OSC), Corvallis, Oregon 97331, and DSIR, Auckland, New Zealand. CALIFORNIA, Ventura Co., 13 km east of Oxnard and 3 km southwest of Camarillo, adjacent to U.S. Highway 34, September, 1977, Ames #03 (OSC). OREGON, Oregon State University, Corvallis, leg. B.A. Daniels, as a contaminant from pot culture of *Glomus mosseae* (Nicol. & Gerd.) Gerdemann & Trappe, Ames #04 (OSC, DSIR).

Details of the life cycle of *E. infrequens* are yet to be learned. Cotton, strawberry, celery, alfalfa, and su-
dan grass did not form VA mycorrhizae four months after inoculation with up to 70 spores of this fungus. Strawberry plants in small trap tubes dually inoculated with E. infrequens and either Gigaspora margarita or Glomus mosseae became mycorrhizal with infections typical of G. margarita or G. mosseae only. No parasitic activity by E. infrequens was observed on spores of G. margarita, G. mosseae, or on strawberry roots. E. infrequens may be an obligate parasite on other fungi. Spores did not germinate on water agar or potato dextrose agar after two weeks at room temperature.

Because we could not demonstrate saprophytic growth and because of the strong resemblance to Acaulospora spp., we feel that E. infrequens belongs in the Endogonaceae. The fact that mycorrhiza formation was not demonstrated by us does not present a conflict since this is apparently true for some species of Endogone and Glomus (Gerdemann & Trappe, 1974).

The authors wish to thank Dr. Charles E. Murgia for the Latin descriptions included in this article and for his assistance in choosing the Greek term for the genus.

LITERATURE CITED

TYPE STUDIES: SOME CORTINARIUS AND TRICHOLOMA SPECIES DESCRIBED BY CHARLES HORTON PECK

JOSEPH F. AMMIRATI and CLARK L. OVREBO

Department of Botany, University of Toronto
Erindale College, Mississauga, Ontario

SUMMARY

Type studies are presented for the following species originally described by C.H. Peck:
Cortinarius muscigenus, C. submarginalis, Tricholoma odorum, T. subacutum, T. subsejunctum, T. terriferum and T. transmutans.

INTRODUCTION

For decades fungal taxonomists have struggled with the names of taxa published by early mycologists who did not designate type collections or cite collections in their original descriptions, and who often did not retain herbarium specimens. These names have been a source of continuous controversy and confusion and have made it difficult or impossible to establish a sound taxonomy for several groups of fleshy fungi.

In recent years a number of North American and European mycologists have actively supported the designation of special type collections (variously referred to as 'representative specimens', 'special neotypes' and 'fixotypes') for the infrageneric taxa of fleshy fungi described by E.M. Fries and other 19th- and early 20th-century mycologists. For these taxa it has been suggested that the 'designated type collection' be made in the area where the original material was gathered and that the macroscopic and microscopic characteristics be thoroughly described and agree in every detail with the protologue of the original author of the taxon. This proposal was part
of a paper presented by A.H. Smith (1977) at the Herbette Symposium on 'Species Concepts in Hymenomycetes' held at the University of Lausanne, Switzerland, August 16-20, 1976. An interesting discussion is appended to the above paper and should be read by all interested in fungal taxonomy. The selection of 'designated type collections' will require a number of years, yet, it seems to be the best way to stabilize the names of these taxa.

In addition to the above problem there are others concerning type collections that require close attention. Many of these apply to taxa described in North America. A major problem is the lack of published, thorough, modern descriptions of a number of the taxa originally described by C.H. Peck, W.A. Murrill and other early North American mycologists. Jenkins (1974, 1977, 1978a, 1978b) found this to be the case with most of the Amanita species described by North American workers. Type studies done previously, for example, those of Singer (1942) and Hesler (1958), while acceptable in their day are inadequate for modern taxonomic studies. Taxonomists specializing in specific taxa should make an effort to publish thorough type studies on members of their group, preferably with illustrations of important taxonomic characteristics. For routine studies mycologists could refer to these type studies rather than sending for the type collection. This practice would cut down on the damage to type collections resulting from excessive handling.

As is the case with certain taxa in the present study and in previous studies by Ammirati (1975), Jenkins (1978a) and others, collections cited in original descriptions are, in some instances, heterogeneous and require the designation of a lectotype. There are other instances where the selection of a lectotype is required, as for example, when the original author cited two or more collections but did not designate a holotype.

In instances where only one collection was cited by the original author it is usually accepted as the holotype as long as it can be clearly established that the collection was the one upon which the original description was based. This procedure is generally no problem but as Jenkins (1978a) found, the citation in the original description and the information with the herbarium specimens do not always completely agree, making it difficult to determine if the collection at hand should be
accepted as the holotype.

In those instances where authors did not cite collections in their original description or when all of the original material and its duplicates are lost, or destroyed, the designation of a neotype is required. Often collections have been destroyed or damaged by insects. Damaged collections should be carefully studied to determine whether they are still acceptable as type collections since, in some instances, important characteristics may have been lost. When type studies are made, the number of specimens and their condition should be noted so that later workers can have some idea of what the type collection is like.

As 'designated type collections' are established for the names of taxa published by 19th- and early 20th-century mycologists (those who did not cite collections or retain herbarium specimens) the type studies discussed above will become increasingly important. They are needed to establish species concepts and relationships, to determine synonymy and they are essential for the development of a world-wide system of taxonomy for fleshy fungi.

With these ideas in mind the authors have begun a study of the taxa of *Cortinarius* and *Tricholoma* described by Charles Horton Peck. Type studies of taxa described by W.A. Murrill, G.F. Atkinson and other North American mycologists will also be published. The main reasons for these studies are to confirm the existence of or establish a type collection for each taxon and thoroughly document the features of the type collection. It is not necessarily our intent to accept or reject these taxa since in many instances further study is required to clarify concepts.

Because of the large number of new taxa (in *Cortinarius* and *Tricholoma*) described by C.H. Peck it will take several years and a series of papers to complete the type studies. This is the first in the series of these papers.

Below we have provided the original description of each taxon without modification except for conversion of certain measurements to current usage and reorganization of the descriptions to parallel the format used elsewhere. This is followed by a description of the microscopic
characteristics of the type collection. Descriptions are from sections and squash mounts studied in 3% KOH (aqueous solution) or Melzer's reagent. All colors of spores and hyphae are from material mounted in KOH. In some instances tissues could not be adequately revived making it difficult or impossible to evaluate certain features of the specimens clearly. These instances are indicated in the description or discussion. Microscopic descriptions of Cortinarii were prepared by the senior author and those of Tricholomas by the junior author.

TYPE STUDIES

CORTINARIUS MUSCIGENUS Peck, Rep. N.Y. State Mus. 41:60. 1888.

Holotype: Wittenberg Mt., Catskills, September 1887, Leg. C.H. Peck (NYS).

Fig. 1

PILEUS 37.5-62.5 mm broad, at first ovate then convex or concave from the recurving of the margin, subumbonate, glabrous, viscoso with a separable pellicle, tawny-orange and widely striate on the margin when moist, tawny and shiny when dry; flesh dingy white, tinged with yellow. LAMELLAE broad, ventricose, adnate, with a broad shallow emargination, somewhat rugose on the sides, yellowish becoming cinnamon. STIPE 75-100 mm long, 6.3-8.4 mm thick, subequal, viscid, even, silky, solid, white or whitish. SPORES .0005 to .0006 in long, .0003 to .00036 broad.

Mossy ground under balsam trees. Wittenberg Mountain. September.

Closely related to *C. collinitus* from which it is separated by its more highly colored pileus, striate margin, and even, not diffracted-squamose, stem.

Microscopic description

SPORES (12.1-) 14.6-18.6 (-20.4) X (7.0-) 7.7-10.6 (-11.7) μm, in profile view elliptical to narrowly amygda-liform or amygdaliform, somewhat to strongly inequilateral with a tendency to be somewhat flattened in the suprahilar
region, in face view mostly elliptical to broadly elliptical or somewhat ovate, distal end + snout-like in some spores, rugulose to verruculose, ornamentation not particularly coarse, single spores yellow-brown with dark brown ornamentation. BASIDIA 4-spored, 32.9-41.6 X 10.2-16.1 μm, clavate to broadly clavate, hyaline with + refractive hyaline granules or containing pale yellow to golden yellow or somewhat brownish yellow pigment, walls thin and hyaline or dark brownish and slightly thickened, sterigmata well developed. PLEUROCYSTIDIA and CHEILOCYSTIDIA absent; lamellar edges appear to be composed of basidia and basidioles (tissue only revives moderately well). SUBHYMENIAL HYPHAE compactly interwoven, + cylindrical (revives poorly), hyaline or pigmented as basidia, walls thin or slightly thickened and blackish brown. TRAMAL HYPHAE OF LAMELLAE subparallel and + interwoven, cylindrical to inflated, mostly 3.7-29.2 μm wide, hyaline or containing yellowish to golden yellow or brownish golden yellow pigment, walls thin and hyaline or slightly thickened and blackish brown. CUTICULAR HYPHAE OF PILEUS + interwoven and compacted to somewhat loosely arranged, + radially oriented, matrix poorly defined in KOH but distinct in Melzer's reagent, mostly 2.2-5.8 μm wide, cylindrical, hyaline, slightly yellowish or containing yellowish pigment, walls thin to slightly thickened, hyaline to yellowish or brownish and + refractive; no pilocystidia present. TRAMAL HYPHAE OF PILEUS + interwoven, + radially oriented especially above, cylindrical to inflated, mostly 4.4-30 μm wide; upper trama (zone adjacent to cuticle) mainly composed of golden yellow to brownish golden yellow hyphae, frequently with dark incrustations; below, the trama mainly composed of hyaline to somewhat yellowish hyphae, with scattered golden yellow hyphae. CORTICAL HYPHAE OF STIPE longitudinally arranged (somewhat irregularly arranged, narrow hyphae in places on surface), subparallel to somewhat interwoven, cylindrical to + inflated, 4.0-25.6 μm wide, hyaline to slightly yellowish or dull yellowish, golden yellow, brownish yellow or brownish orange, the pigmented hyphae + refractive, some hyphae containing refractive, hyaline granules, thin-walled; hymenium decurrent on stipe apex, no caulocystidia seen. CORTINAL HYPHAE cylindrical, 2.2-6.0 μm wide, hyaline, walls thin and at times somewhat indistinct and refractive. OLEIFEROUS HYPHAE refractive, + hyaline, seen only in stipe cortex, note presence of pigmented hyphae, especially in stipe cortex, which are somewhat similar to oleiferous hyphae. CLAMP CONNECTIONS
of the normal type, present throughout the basidiocarp but difficult to see in the hymenium and lamellar trama (tissue revives poorly).

OBSERVATIONS: The information with the collection and the citation in the original description are in very close agreement. The collection contains needles and other debris of Abies; Peck stated that the collection was made in mossy ground under balsam trees. There is no doubt that this is the collection studied by C.H. Peck when he wrote the original description, and it is here accepted as the holotype collection.

There are 16-18 basidiocarps in the collection, including both young and mature specimens. Some are broken, and there is some insect damage, but in general the collection is in good condition. Some of the specimens are mounted on cards and most have been pressed. The tissue of the basidiocarps was somewhat difficult to revive, but all of the diagnostic characteristics could be seen.

C. muscigenus is in the subgenus *Myxacium*. It is one of several species that have equal to subequal, more or less cylindrical stipes and regularly produce clamp connections throughout the basidiocarp. *C. muscigenus* is distinguished by its very large spores (14.5-18.5 X 7.5-10.5 μm), tawny orange to tawny pilei and the absence of lilac or violet colours in the flesh, stipe surface and lamellae.

The relationship of *C. muscigenus* to other Myxacia is still unclear. Peck in his original discussion suggested a relationship with *C. collinitus* (Fries) S.F. Gray. A relationship to *C. mucosus* (Bull ex. Fries) Kickx also seems possible. However, without type collections for these species it is impossible to be sure of their concepts and consequently their relationship to *C. muscigenus*.

Peck described the lamellae as "yellowish becoming cinnamon" indicating that the young lamellae were yellowish and the mature lamellae cinnamon. This type of colour change is common in *Cortinarius*. It is somewhat difficult to be sure of what Peck meant by yellowish. Field studies to date have not revealed any species in this group of *Myxacia* with truly yellow lamellae. It is likely
that the young lamellae were tinted yellow to cream color or slightly cinnamon.

Fig. 2

PILEUS 5-10 cm broad, fleshy, firm, convex becoming nearly plane, or concave by the elevation of the margin, viscid when moist, yellowish brown, generally a little paler on the rather definite and commonly fibrilllose margin; flesh whitish. LAMELLEAE thin, close, adnate, creamy yellow when young, soon cinnamon. STIPE rather long, 7.5-15 cm long, 8.4-12.6 mm thick, equal or slightly thickened at the base, solid, silky fibrilllose, slightly viscid, whitish or pallid. SPORES subelliptic, .0004-.0005 of an inch long, .00002-.00024 broad.

Low moist places in woods. Bolton, August.

The margin of the pileus is generally paler than the rest and separated from it by a definite line. It is from 6.3-12.6 mm broad and is sometimes curved upward and conspicuously fibrilllose. This difference between the margin and the rest of the pileus is not clearly shown in dried specimens. This species belongs in the section Myxaciurn.

Microscopic description

SPORES 10.2-12.5 X 5.5-6.6 μm, in profile elliptical to broadly elliptical or ± amygdaliform, inequilateral, in face view elliptical to broadly elliptical or somewhat ovate, distal end rounded to somewhat snout-like, mostly verruclose, light yellow-brown to light medium brown with darker brown ornamentation. BASIDIUM 4-spored, clavate to broadly clavate, 23.4-31.4 X 8.0-10.2 μm, hyaline or containing light yellow, dull yellow or brownish yellow pigment, some with hyaline, + granular contents, thin-
walled. PLEUROCYSTIDIA and CHEILOCYSTIDIA absent; lamellae revive poorly, but there is no evidence of cystidia on the lamella edges. SUBHYMENIAL HYPHAE compactly interwoven, cylindrical, hyaline, thin-walled. TRAMAL HYPHAE OF LAMELLAE subparallel, + interwoven, cylindrical to inflated, 2.6-21.9 μm wide, hyaline to slightly colored or yellowish, some containing yellow pigment, at times with granular contents, thin-walled, + refractive. CUTICULAR HYPHAE OF PILEUS + interwoven, + radially oriented, cylindrical, 2.9-9.5 μm wide, + refractive, hyaline to slightly colored or commonly yellow to golden yellow, walls thin and hyaline or slightly brownish, often incrusted; no pilocystidia seen. TRAMAL HYPHAE OF PILEUS interwoven, + radially oriented above, cylindrical to inflated, 2.6-29.2 μm wide, hyphae in upper trama (just below cuticle) sometimes hyaline to slightly colored or slightly yellowish but usually yellow to golden yellow, below, the hyphae more commonly hyaline to slightly yellowish, in upper trama often incrusted, mostly thin-walled, + refractive; tramal hyphae in general revive poorly, the pigmented zone in upper trama grades into cuticle and does not form a particularly distinct zone. CORTICAL HYPHAE OF STIPE longitudinally arranged, subparallel to + interwoven, cylindrical to + inflated, 3.3-21.9 μm wide, surface hyphae are in general narrower than those just beneath surface, occasional groups of narrow, cylindrical hyphae scattered over surface near apex (perhaps part of cortina), hyaline to slightly colored or slightly yellowish; no caulocystidia seen. CORTINAL HYPHAE absent (no specimens present with cortina). OLEIFEROUS HYPHAE present, refractive, hyaline to slightly colored; there are a lot of refractive hyphae in the lamellar trama, these are much like oleiferous hyphae. CLAMP CONNECTIONS present throughout the basidiocarp, of the normal type or some on hyphae of pileus cuticle + medallion-like.

OBSERVATIONS: The information with the collection is in agreement with the citation in the original description. The collection is composed of six basidiocarps that have been pressed and are somewhat broken but in general are in good condition. The collection is heterogeneous, containing one discordant element, a pileus and attached short piece of stipe, that is unrelated to the remaining five basidiocarps. It is probably Cortinarius gentilis Fries or a related species. From the original protologue it is clear that Peck did not include the discordant element in his description. It has been removed from the
remainder of the collection which in turn has been designated as the lectotype.

The relationship of *C. submarginalis* to other species in *Mycaxium* is unclear. The low number of existing herbarium specimens indicates that it is an uncommon species. According to Peck's original description it is a fleshy species with a yellowish brown pileus, creamy yellow young lamellae and a whitish to pallid stipe. These characteristics, in combination with the smaller spore size (10.2-12.5 X 5.5-6.6 μm), make it distinct.

Holotype: Tacoma (Takoma) Park, D.C., 1895, Mrs. E. M. Williams, (NYS).

Fig. 7

PILEUS 25-50 mm broad, fleshy, convex, becoming nearly plane or slightly depressed, subumbonate; surface glabrous, shining when young, soft like kid, yellowish or pale tan; context yellow, odor strong, jessamine-like, taste at first nutty, then farinaceous. **LAMELLAE** broad, thick, rounded behind, adnexed, easily separating from the stem, white or tinged with pink. **STIPE** 50-75 mm long, 6-10 mm thick, equal, sometimes slightly bulbous; surface silky fibrillose but pruinose at the apex, colored like pileus but pale yellow toward the base and white at the apex. **SPORES** 7.5-10 X 5-6 μm, elliptical.

Microscopic description

SPORES 10.5-11.4 X 5.7-6.7 μm (from stipe apex), amygdaliform to subfusiform in profile, broadly fusiform in face view, smooth, thin-walled, hyaline, inamyloid. **BASIDIA** 33-37 X 7.6-8.6 μm, 4-spored, clavate, hyaline, inamyloid. **HYMENIAL CYSTIDIA** and **CAULOCYSTIDIA** not seen. **TRAMAL HYphae** of **LAMELLAE** 3.8-9.6 μm broad, parallel, undulating, cylindrical to slightly inflated, hyaline, inamyloid. **CUTICULAR HYphae** of **PILEUS** 2.9-3.8 μm broad, radially appressed to slightly interwoven, cylindrical, smooth, thin-walled, hyaline to light cinnamon tan, inamyloid. **TRAMAL HYphae** of **PILEUS** 4.8-11.4 μm broad, radially arranged,
cylindrical to slightly inflated, hyaline, inamyloid. SURFACE HYPHAE OF STIPE 2.9-4.8 µm broad, longitudinally appressed, cylindrical, smooth, thin-walled, hyaline to light yellow, inamyloid. TRAMAL HYPHAE OF STIPE 3.8-12 µm broad, parallel, compacted, cylindrical to slightly inflated, hyaline, inamyloid. HYPHAE AT STIPE BASE 2.9-4.8 µm broad, cylindrical, smooth, thin-walled, hyaline, inamyloid. OLEIFEROUS HYPHAE not seen. CLAMP CONNECTIONS present at base of basidia.

OBSERVATIONS: The type collection consists of 3 fruiting bodies, all with broken stipes. The collection is homogeneous. The information with the collection agrees with that given in the original description. It is concluded that this collection is the one cited by Peck and can be accepted as the holotype.

Peck states that *T. odorum* is remarkable for its peculiar and strong odor, which resembles that of jessamine blossoms. The odor and large spores link it to *Tricholoma sulphureum* (Fr.) Staude. A number of European varieties of *T. sulphureum* are recognized (Bon, 1974), but none fit the fungus described by Peck.

I have collected this species in Michigan and Ontario under hardwoods. The carpophores are almost entirely yellow when young, but the pilei and lamellae fade to buff or tan in age.

Holotype: Woods and groves, North Elba, September, (NYS).

Fig. 4

PILEUS 38-76 mm broad, ovate or broadly conical at first, then convex and subacutely umbonate; surface dry, silky and obscurely virgate with minute, innate fibrils, whitish and tinged with smoky-brown or bluish-gray, darker on the umbo; context white, taste acrid or peppery. LAMELLAE slightly adnexed, white, rather close. STIPE 50-100 mm long, 6-13 mm thick, equal; surface silky-fibrillose, white; context stuffed or hollow. SPORES .00025-.0003 in long, .0002 to .00025 broad (6.4-7.6 X 5.1-6.4 µm), broadly
elliptical or subglobose.

Microscopic description

SPORES 7.6–8.6 μm (from stipe apex), broadly elliptical in profile and face view, smooth, thin-walled, hyaline, inamyloid. **BASIDIA** 34–38 × 7.6–9.5 μm, 4-spored, occasionally 2-spored or mucronate (single sterigma), hyaline, inamyloid. **CHEILOCYSTIDIA** 24–31 × 11–14 μm, clavate to broadly clavate (mostly collapsed), smooth, thin-walled, hyaline, inamyloid. **PLEUROCYSTIDIA** absent. **CAULOCYSTIDIA** present as recurved hyphal end cells at stipe apex or scattered elsewhere, 23–29 × 5.7–7.6 μm, cylindrical or clavate, smooth, thin-walled, hyaline, inamyloid. **TRAMAL HYphae of Lamellae** 3.8–14 μm broad, parallel, cylindrical to slightly inflated, hyaline, inamyloid. **Hyphae of SUBHyMENIUM** 2.9–3.8 μm broad, hyaline, inamyloid. **CUTICULAR HYphae OF PILEUS** 2.9–5.7 μm broad, radially appressed to slightly interwoven, cylindrical, smooth, thin-walled, hyaline to light yellow, inamyloid. **TRAMAL HYphae OF PILEUS** 3.8–14 μm broad, radially arranged and cylindrical near the cuticle, interwoven and cylindrical to interwoven elsewhere, hyaline, inamyloid. **SURFACE HYphae OF STIPE** 2.9–4.8 μm broad, longitudinally appressed, cylindrical, smooth, thin-walled, hyaline, inamyloid. **TRAMAL HYphae OF STIPE** 4.8–14 μm broad, parallel, compacted, hyaline, inamyloid. **HYphae AT STIPE BASE** 2.9–5.7 μm broad, hyaline, inamyloid. **OLEIFEROUS HYphae** present, hyaline, inamyloid. **CLAMP CONNECTIONS** absent.

Observations: The type collection consists of about 10 fruiting bodies, most are broken into several pieces. The collection is homogeneous and the information on the label of the herbarium box agrees with that given in the original description. It is concluded that this collection is the one cited by Peck and thus can be accepted as the type.

Peck states that *Tricholoma subacutum* is "too closely related to *Tricholoma virgatum*, but it is separable by its prominent subacute umbo, paler pileus, hollow stem and hot or peppery taste". Since there is no type for *T. virgatum* (Fr.) Kummer, it is nearly impossible at this time to ascertain whether *T. subacutum* is a distinct species.

Holotype: Under evergreen and deciduous trees, Lewis Co., September 21, 1911, (NYS).

Fig. 5

PILEUS 25-70 mm broad, fleshy, conic or convex; margin often wavy and lobed; surface slightly viscid when moist, virgate or reticulate with blackish brown fibrils, blackish brown, often pale yellow or greenish yellow on the margin; context white, taste farinaceous. LAMELLAE adnexed, thin, rounded behind, white, sometimes tinged yellow anteriorly, close. STIPE 30-50 mm long, 6-12 mm thick, stout, nearly equal, white, sometimes tinged yellow; context solid. SPORES minute, 5-6 X 4-5 μm.

Microscopic description

SPORES 5.7-6.7 x 4.8-5.7 μm (from stipe apex), broadly elliptical to subglobose in profile and face view, smooth, thin-walled, hyaline, inamyloid. BASIDIA 30-38 x 7.6-9.8 μm, 4-spored, clavate, hyaline, inamyloid. HYMENIAL CYSTIDIA absent. CAULOCYSTIDIA present as recurved hyphal end-cells at stipe apex, 19-26 x ± 3.8 (-7.6) μm, cylindrical or clavate, smooth, thin-walled, single or in pyramidal clusters, hyaline, inamyloid. TRAMAL HYPHAE OF LAMELLAE 3.8-14 μm broad, parallel, cylindrical to slightly inflated, hyaline, inamyloid. HYPHAE OF SUBHYMENIUM 1.9-2.9 μm broad, hyaline, inamyloid. CUTICULAR HYPHAE OF PILEUS 2.9-5.7 μm broad, loosely interwoven to nearly erect, embedded in a gelatinous matrix, cylindrical, smooth or slightly roughened, thin-walled, hyaline to dull yellowish brown, inamyloid. TRAMAL HYPHAE OF PILEUS 3.8-16 μm broad, radially arranged to interwoven, cylindrical to inflated, hyaline, inamyloid. SURFACE HYPHAE OF STIPE 2.9-4.8 μm broad, longitudinally appressed, cylindrical, smooth, thin-walled, hyaline, inamyloid. TRAMAL HYPHAE OF STIPE 3.8-14 μm broad, parallel, compacted, cylindrical to inflated, hyaline, inamyloid. HYPHAE AT STIPE BASE 2.8-5.7 μm broad, cylindrical, thin-walled, hyaline, inamyloid. OLEIFEROUS HYPHAE present, light yellow, inamyloid. CLAMP CONNECTIONS absent.

OBSERVATIONS: The type collection consists of 4 or 5 pressed fruiting bodies in fair condition. The
collection is homogeneous and the information with the collection agrees with that given in the original description. It is concluded that this collection is the one cited by Peck and can be accepted as the holotype.

Tricholoma subsejunctum is closely related to Tricholoma sejunctum Quel. but differs in having a darker (blackish brown) pileus. The illustration with the original publication shows the pileus to be streaked with black fibrils giving the pileus a blackish color; the extreme edge is tinted yellow. This extremely dark color, assuming it is accurately reproduced, easily distinguishes T. subsejunctum from T. sejunctum. The latter may have a dark brownish disc or some fibrils may be nearly black, but the pileus is never as black as that of T. subsejunctum. Microscopically, the two are almost identical. Additional collections of T. subsejunctum are needed to establish a clear concept of this species and its relationship to T. sejunctum.

Peck reports this species as being edible.

TRICHOLOMA TERRIFERUM Peck, Rept. N.Y. St. Mus. 41: 60. 1888.

Holotype: Woods, Catskill Mountains, September (NYS).

Fig. 6

PILEUS 76-102 mm broad, convex or nearly plane, irregular; margin often wavy; surface viscid, glabrous, pale alutaceous, generally soiled with adhering particles of earth carried up in its growth; context white and with no decided odor. LAMELLAE slightly adnexe, white, not spotted or changeable. STIPE 25-38 mm long, 13-17 mm thick, short, equal; surface floccose or squamulose at the apex, white; context solid. SPORES minute, .00012 in (3 μm) long, subglobose.

Microscopic description

SPORES + 4.8 X 2.9-3.8 μm (from stipe apex), elliptical in profile and face view, smooth, thin-walled, hyaline, inamylloid, uniguttulate. BASIDIA 19-25 X 4.8-5.7 μm, 4-spored, clavate, hyaline, inamylloid. HYMENIAL
CYSTIDIA absent. CAULOCYSTIDIA present on stipe apex, formed from recurved end-cells or arising from intercalary cells, 24-33 X 3.8-6.7 µm, cylindrical, strangulate, clavate, some with cross walls, smooth, thin-walled, single or in fascicles or pyramidal clusters, hyaline, inamyloid. TRAMAL HYphae OF LAMELLAE 3.8-14 µm broad, parallel, cylindrical to slightly inflated, hyaline, inamyloid. HYphae OF SUBHYMENIUM + 2.9 µm broad, hyaline, inamyloid. CUTICULAR HYphae OF PILEUS 1.9-4.8 µm broad, embedded in a gelatinous matrix, loosely interwoven to nearly erect, smooth, thin-walled, hyaline to light yellowish brown, inamyloid. TRAMAL HYphae OF PILEUS 3.8-12 µm broad, radially arranged to interwoven, cylindrical to slightly inflated, hyaline, inamyloid. SURFACE HYphae OF STIPE 2.4-4.8 µm longitudinally appressed or sometimes loosely interwoven in spots, cylindrical, smooth, thin-walled, hyaline, inamyloid. TRAMAL HYphae OF STIPE 3.8-9.5 µm broad, parallel, compacted, cylindrical, hyaline, inamyloid. HYphae AT STIPE BASE 2.9-6.7 µm broad, cylindrical, smooth, thin-walled, hyaline, inamyloid. OLEIFEROUS HYphae present, light yellow, inamyloid. CLAMP CONNEcTIONS absent.

OBSERVATIONS: The type collection consists of 4 fruiting bodies that are in good condition but are pressed and flattened. The collection is homogeneous and the information on the label of the herbarium box agrees with that given in the original description. It is concluded that this collection is the one cited by Peck and can be accepted as the type.

Tricholoma terrifeum is related to those species of Tricholoma with brown, viscid pilei, a group that is in need of critical study in North America. Its most distinguishing features appear to be its pale, alutaceous pileus color, lamellae that do not discolor and small spores (4.8 x 2.9-3.8 µm). Collections from the type locality with thorough notes are needed to establish a sound concept for this species.

≡ TRICHOLOMA TRANSmutANS (Pk.) Sacc., Syll. Fung. 5: 91. 1887.
Holotype: ground in woods, Sandlake, August (NYS).

PILEUS 50-76 mm broad, convex; surface smooth, very viscid or glutinous and alutaceous when moist, becoming brownish or reddish when dry. LAMELLAE narrow, whitish or pale yellow, becoming red-spotted, often branching, close. STIPE 76-100 mm long, 6-10 mm thick, equal or tapering upwards; surface smooth, whitish, often reddish stained; context stuffed or hollow. SPORES .0002 in (5 μm) in diameter, subglobose.

Microscopic description

SPORES 6.7-6.7 X + 4.8 μm (from stipe apex), broadly elliptical in profile and face view, smooth, thin-walled, hyaline, inamylloid, uniguttulate. BASIDIA 24-29 X 5.7-7.6 μm, 4- or occasionally 2-spored, clavate or irregularly clavate, hyaline or reddish brown (particularly at gill edge), inamylloid. HYMENIAL CYSTIDIA absent but often large basidiolike cells present (29-36 X 5.7-8.6 μm) on gill edge. CAULOCYSTIDIA recurved hyphal end-cells at stipe apex, 24-33 x 3.8-7.6 μm, cylindrical or clavate, smooth, thin-walled, single or in fascicles, hyaline, inamylloid. TRAMAL HYPHAЕ OF LAMELLAE 3.8-14 μm broad, parallel, undulating, cylindrical to slightly inflated, hyaline or reddish brown in spots, inamylloid. SUBHYMENIAL HYPHAЕ + 3.8 μm broad, hyaline, inamylloid. CUTICULAR HYPHAЕ OF PILEUS 2.9-5.7 μm broad, embedded in a gelatinous matrix, interwoven, cylindrical, smooth, thin-walled or with hyaline incrustations on the outer surface, hyaline to light reddish brown, inamylloid. TRAMAL HYPHAЕ OF PILEUS 3.8-14 μm broad, radially arranged and narrowly cylindrical near the cuticle, interwoven and cylindrical to inflated elsewhere, hyaline, inamylloid. SURFACE HYPHAЕ OF STIPE 2.8-4.8 μm broad, longitudinally appressed, cylindrical, smooth, thin-walled, hyaline to light tan, inamylloid. TRAMAL HYPHAЕ OF STIPE 3.8-11.4 μm broad, parallel, compacted, cylindrical to slightly inflated, hyaline, inamylloid. HYPHAЕ AT STIPE BASE 2.9-4.8 μm broad, cylindrical, smooth, thin-walled, hyaline, inamylloid. OLEIFEROUS HYPHAЕ present, light brown, inamylloid. CLAMP CONNECTIONS absent.
OBSERVATIONS: The type collection consists of about 12 pressed fruiting bodies. Most are in good condition, but several are broken. The collection is homogeneous and the information with the collection agrees with that given in the original description. It is concluded that this collection is the one cited by Peck and can be accepted as the holotype.

Peck states that this species occurs in wet weather and has a tendency to grow in circles.

Tricholoma transmutans is one of several species of *Tricholoma* with a brown, viscid pileus. Its relationship to other species is difficult to ascertain because the color of the lamellae is difficult to interpret. Peck in his original description described them as whitish or pale yellow. Illustrations in a later publication (Peck, 1896) show the lamellae as yellowish in face view but white or light buff when viewed as a group from an oblique angle. Another possibility is that the lamellae change color as they mature, but this is not suggested in Peck's original description.

Several authors (Kauffman, 1918; Singer, 1942) relate *T. transmutans* to *T. flavobrunneum* (Fr.) Staude, a species with yellow lamellae. If, in fact, the lamellae are white to light buff, rather than yellow, then *T. transmutans* is probably more closely related to *T. pessundatum* (Fr.) Quel. Additional collections, preferably from the type locality, are needed to determine the correct lamellae color for *T. transmutans*. This would provide a better overall concept of the species and help to elucidate its true relationship to other *Tricholomas*.

ACKNOWLEDGEMENTS

The authors wish to thank Dr. John Haines, Senior Scientist, New York State Museum, Albany, New York for the loan of collections and for his help and interest in the taxa described by C.H. Peck. We also thank Ms. B. Malloch for her help in preparing the manuscript. Supported by grant (A9861) from the National Research Council of Canada to J.F. Ammirati.
LITERATURE CITED

STUDIES ON DIMARGARITACEAE (MUCORALES) II.
A NEW DISPIRA PARASITIC ON ASCOMYCETOUS HOSTS

P. C. MISRA AND KANCHAN LATA
Department of Botany, University of Gorakhpur
Gorakhpur 273001, U.P., India

SUMMARY

 Dispira implicata Misra & Lata sp. nov. isolated from dung of rodents, house lizard and excreta of birds, collected from Gorakhpur, U.P., India, is described and illustrated. It parasitizes Chaetomium bostrychodes, Ascotricha sp., and Thielavia sp. and is characterized by complex fertile axes which form long spiral coils. This is the second member of the Dimargaritaceae which parasitizes non-mucoralean hosts.

The genus Dispira van Tieghem is characterized by sporophores producing sympodially branched fertile branch-systems which form coiled or angular axes bearing fertile branches, the latter terminated by two-celled sporiferous branchlets whose cells bear distal whorls of two-spored merosporangia (Benjamin, 1959). Three species are recognized in this genus: Dispira cornuta van Tieghem, D. simplex Benjamin, and D. parvispora Benjamin (Benjamin, 1963). The occurrence of the first two species in India has been described in a previous communication (Misra & Gupta, 1978).

An interesting Dispira was first isolated in December, 1977, from mouse dung collected in Gorakhpur, India. Several isolates of the same species were later obtained from incubated dung of rat, shrew, house lizard, and excreta of birds. The fungus failed to parasitize Cokeromyces recurvatus Poitras but grew readily on Chaetomium bostrychodes Zopf on yeast extract soluble starch agar (YpSs). It also grew on Ascotricha sp. and Thielavia sp. which were tried as hosts. The fungus differs sharply from the described species of Dispira in the nature of its fertile axes and is described here as Dispira implicata sp. nov. The epithet is based on the complex nature of its fertile axes. It is the second member of the family Dimargaritaceae which parasitizes non-mucoralean hosts; the other species known to parasitize Chaetomium is Dispira simplex (Benjamin, 1961; Brunk & Barnett, 1966).

DISPIRA IMPLICATA Misra & Lata, sp. nov.

Coloniae Chaetomium bostrychodes in agaro cum extracto fermenti et amylo solubili composito (YpSs) vegetantem undeciman diem parasitantes 1 cm diametro, 4-6 cm altae, densae primo albae, seniores cinnamomeae evadentes. Hyphae vegetales 1.7-2.8 μ diametro. Sporophori erecti, septati, ad 6 mm alti, ex latere ramos 3-10 fertiles producentes. Rami fer-
tiles singuli atim, raro bini, orti, prope sub spororubi septis aliquibus, primo ex axi centrali brevi recurvato in 2-3, raro 4, ramulis sporiferis terminatis et ramum lateralem solum vel par ramorum producente consistentes; unus ramus lateralis vel gemini, et nonnumquam axis centralis in ramos triplices ad quadrangita duas assiduitates fissus, unusquisque axem cochleaeformem conficiens ad omne trifurcium ramulum fertilem, ramulum sterilem, et ramulum axem producentem gignens; ramum lateralem non axem cochleaeformem efformans vulgo non post quartum trifurcium se producens; trifurcium spatio paene aequali, 16-24 \(\mu \), inter se distantes. Cochlea diametro aequae, 150-300 \(\mu \) longae, 38-53 \(\mu \) lateae, ramis sterilibus exclusis, ad 10 gyros efficientes, plerumque 4 trifurciscs inter gyrum unum inclusis, ramulis omnibus fertilebus intra cochleam positis, sterilibus tamen extra cochleam proiectientibus, in superficie igitur instar centipedae. Ramuli steriles stricte attenuati, paulum cochleaeformes, haud vel semel septati, 28-75 (-93) \(\mu \), ad medium 1.1-2.3 \(\mu \) lati. Ramuli fertile recurvati, 17-28 \(\mu \) longi ad medium 2.3-4.6 \(\mu \) lati, desinentes in 2-3, raro 4 ramulos sporiferos in ordine ad gennazione productos. Ramuli sporiferi haud a vesiculari subtendi, 9.2-13.8 \(\times \) 3.4-5.7 \(\mu \), e cellulis dubius paene aequibus, subovoideus circulos distales merosporangiorum bispororum ferentes compositi; parte terminali merosporangii a gennazione apicali orta et basali. Sporae globosae, subglobosae, ovoidae, vel nonnumquam ellipsoidae, hyalinae, leves, maturae semper siccae; globosae 2.3-4.6 \(\mu \) diametro, ovoidae et ellipsoidales 3.4-4.6 (-5.1) \(\times \) 2.3-2.8 (-3.4) \(\mu \). Zygosporae in culturis vetustis in agri superficie efformantae in finibus projectorum lateraliym hypharum vegetabilium, pallide griseobrunneae, globosae, crasse tunicatae, foveis ellipticis depressae, crebre paene leves, 25-35 \(\mu \) diametro, maturae globulum magnum, eccentricum refractilem includentes, 10.3-13.8 \(\mu \) diametro, tunica 3.4-4.6 \(\mu \) crassa.

Typus: PCM 632.

**Colonies on Chaetomium bostrychodes on yeast extract soluble starch agar (YpSS) 1 cm in diam in 10 days at 30 C, 4-6 mm high, dense, at first white, becoming 'Cartridge Buff' (Maerz and Paul, 1950, Plate 11 B2) in 15 days and then 'Cinnamon' (Plate 12 D7) in one month. Vegetative hyphae colorless, smooth, sparsely branched, septate, 1.7-2.8 \(\mu \) in diam. Sporophores erect, septate, up to 6 mm high, very light greyish brown, smooth-walled, bearing laterally 3-10 fertile branches. Fertile branches arising singly, rarely in pairs, immediately below some of the septa of the sporophore. Fertile branch consisting at first of a short recurved central axis terminated by 2-3, rarely 4 sporiferous branchlets and giving rise to a single or a pair of lateral branches; either one or both lateral branches and sometimes the central axis becoming up to 42 times successively trichotomously branched forming spirally coiled axes bearing at each trichotomy a fertile branchlet, a sterile branchlet and a branchlet which continues the axis; the lateral branch nor forming spiral axis generally ceasing growth after fourth trichotomy; trichotomies almost equally spaced, about 16-24 \(\mu \) apart. Spiral coils of same diam, 150-300 \(\mu \) long, 38-53 \(\mu \) wide (excluding sterile branchlets), each consisting of up to 10 turns (gyres), with usually 4 trichotomies per turn, with all fertile branchlets contained within the spirals, with all sterile branchlets projecting towards the outside of the spiral coil and, in surface view, resembling the legs of a centipede. Sterile branchlets narrowly attenuated, slightly spirally coiled, aseptate or 1-septate, 28-75 (-93) \(\mu \) long,
1.1-2.3 μ wide near the middle, smooth. Fertile branchlets recurved, 17-28 μ long, 2.3-4.6 μ wide in the middle, terminated by 2-3 or rarely 4 sporiferous branchlets formed successively by budding. Sporiferous branchlets not subtended by vesicles, 9.2-13.8 x 3.4-5.7 μ, composed of two almost equal, slightly ovoid cells bearing distal whorls of two-spored merosporangia; the terminal part of the merosporangium developed by apical budding from the basal. Spores globose, subglobose, ovoid or occasionally ellipsoid, hyaline, smooth-walled, remaining dry at maturity; globose spores 2.3-4.6 μ in diam, ovoid or ellipsoid spores 3.4-4.6 (-5.1) x 2.3-2.8 (-3.4) μ. Zygospores formed on agar surface in old cultures, developed terminally on lateral outgrowths of vegetative hyphae, light greyish brown, globose, thick-walled, marked with elliptical depressions, often appearing almost smooth, 25-35 μ in diam, containing, when mature, one large, usually eccentric, refractive globule 10.3-13.8 μ in diam; wall 3.4-4.6 μ thick.

Holotype: INDIA, UTTAR PRADESH, Gorakhpur, Dewan Bazar, isolated from mouse dung, Dec. 1977, PCM 632. Living cultures will be transmitted to ATCC, NRRL, and RSA.

ACKNOWLEDGMENTS

The authors thank Prof. Donald P. Rogers for translating the diagnosis into Latin. The work was supported by grant No. F.23-613/77(SR.II) from the U. G. C., India.

LITERATURE CITED

APOPHYSOMYCES, A NEW GENUS OF THE MUCORALES

P. C. MISRA, K. J. SRIVASTAVA AND KANCHAN LATA

Department of Botany, University of Gorakhpur
Gorakhpur 278001, U. P., India

SUMMARY

Apophysomyces elegans, a new genus and species of Mucorales isolated from soil is illustrated and described. It has pyriform sporangia with conspicuous, funnel-shaped or bell-shaped apophyses produced singly and terminally on unbranched sporangiophores which are generally developed laterally from aerial hyphae with a 'foot-cell'-like hyphal segment at the base, or which arise at the end of stolon-like branches with a group of rhizoids below; the wall of the sporangiophores is characteristically darkened and thickened a little below the apophysis.

A new genus is described in the Mucorales to accommodate a very interesting fungus which could not be placed in any known genus. The genus is named Apophysomyces on account of its very distinct and characteristic apophyses. The type and only species is described here as Apophysomyces elegans, the epithet meaning fine or neat. The description is based on two isolates which were obtained from soil of a mango orchard and of a grassy site, situated about 50 km apart. Both isolates appeared on soil plates prepared with Martin's peptone dextrose agar (Martin, 1950). The fungus grew well on malt extract agar, synthetic Mucor agar (SMA) and yeast extract soluble starch agar (YpSs) media. Normal growth and reproduction occurred at 30-40°C. Growth was very poor on Czapek's solution agar and plain agar (water agar) media. On the latter medium a different mode of formation of sporangiophores was observed.

APOPHYSOMYCES Misra, gen. nov.

Sporangiophora plerumque singula crescentia ex hyphis aeriis cum segmento hyphali modificato in basi, vel hypharum stoloniformium in apicibus cum rhizoideis infra, haud ramosa, apicem versus gradatim attenuata, grisoon-brunnea, crassi-tunicata, pariete interne plerumque fuscato et incrassato in uno loco paulatim subapophysis. Sporangia terminalia, singula, pyriformia, multispora, cum apophysis infundibuliformii vel campanulatis distinctis atque columnellis hemisphericis; paires sporangi tenuis, levis, deliquescent, dereliquent collum aliquod. Sporangiosporae plerumque oblongae, subhyalinae, leves.

Species typica: Apophysomyces elegans Misra, Srivastava & Lata.

Sporangiophores generally developing singly, on rich media usually arising near the ends of aerial hyphal branches with a segment of the hyphal branch at the place of origin of
sporangiophores becoming slightly thicker-walled and light greyish brown after becoming delimited by septa, on plain agar arising at the ends of stolon-like hyphae with a group of rhizoids below, unbranched, slightly tappered towards the apex, greyish-brown, thick-walled, with the wall generally darker and thicker towards the inside at a place a little below the apophysis. Sporangia produced terminally and singly, pyriform, with conspicuous funnel-shaped or bell-shaped apophyses, multisored, with hemispherical columellae. Sporangial wall thin, deliquescent, leaving a small collar at the base of the columellae. Sporangiospores mostly oblong with rounded ends, subhyaline, thin-walled, smooth.

APOPHYSOMYCES ELEGANS Misra, Srivastava & Lata, sp. nov. (FIGS. 1 & 2)

Coloniae in SMA vel agar OBYs rapidc crescentes, flocculentcs, primum albce, maturce ntes brunneo-griseae. Hyphae aeriae ramosae, hyalinae, plerumque aseptatae vel cum septis nonnullis in culturis maturis, 3.4-8.0 µm in diam. Sporangio phora plerumque crescentia singula prope apices ramorum hypylalium aeriorum pariete uno incrassato et segmento hyphali leviter griseo-brunneo in basi, recta vel curvata, haud ramosa, crassi-tunicata, laevia, usque ad 532 µm longa, ad basim 3.4-5.7 µm lata, apicem versus gradatim attenuata 2.3-3.4 µm subapophysis; pariete interne non-numquam leniter fuscato et incrassato uno loco 4-18 µm subapophysis. Sporangia terminalia, singula, pyriformia, multispora, distincte apophysata, columellata, 20-58 µm diam, paries pellucidus, lenis, deliquescentes, dere-linquens collum aliquod. Apophyses conspiciue infundibuliformes vel campanulate, 10-46 µm altae, 11-40 µm diam in loco latissimo. Columella hemispherica, subhyalina usque ad pallide griseo-brunnea, 18-28 µm diam, collare ornata. Sporangiosporae plerumque oblongae, raro subglobosae, subhyalinae, leves, 5.4-8.0 x 4.0-5.7 µm. Zygosporae non visae.

Coloniae in agar simplici ex hyphis ramosis, sparsis, immersis pro parte maxima compositae, formantibus paucos stolones aerios et rhizoideo-ros. Sporangio phora singula crescentia in apice hypyalium stoloniformium ramorum quae infra structura rhizoidea sunt ornata, erecta, levia vel apicem et basim versus incrassata; pariete sporangio phorarum interne incrassante subapophysis magis conspiciue. Rhizoidea haud ramosa vel paucem ramosa, 2.3-4.6 µm diam.

Holotypus: PCM 597.

Colonies on synthetic Mucor agar and yeast extract soluble starch agar growing rapidly at 30-32 C, at first low and growing near the agar surface, soon forming flocculent aerial mycelium and filling the petri dish within 7 days of inoculation, white at first, becoming brownish grey (Maerz and Paul 1950, near Plate 15 C6) in age; reverse pale yellow. Mycelium aerial and submerged; aerial hyphae branched, hyaline, smooth, generally aseptate but with a few septa in old cultures, 3.4-8.0 µm in diam; submerged hyphae very thin, profusely branched, colorless, aseptate, compacted. Sporangio phores formed slowly, generally arising singly, developing almost at right angles from aerial hyphal branches with a segment of the hyphal branch at the place of origin of sporangiophore generally becoming delimited by two septa and the segment then becoming slightly thicker-walled and light greyish brown; often the hyphal branch after forming a lateral sporangiophore proceeding to form a second sporangiophore and terminating the branch, or the branch continuing for some length before ceas-
growth. Sporangioles straight or curved, slightly tapered towards the apex, unbranched, light greyish brown, often darker near the base, up to 532 μm long, 3.4-5.7 μm wide near the base, gradually tapering to 2.3-3.4 μm wide just below the apophyses; wall thick, smooth, occasionally slightly darker and thicker towards the inside at a point about 4-18 μm below the apophyses. Sporangia produced terminally and singly on the sporangioles, pyriform, multispored, distinctly apophysate, columellate, white at first, light yellowish brown by reflected light when mature, 20-58 μm in diam; sporangial wall transparent, thin, smooth, deliquescent, leaving a small collar at the base of the columella; apophyses conspicuous, funnel-shaped or bell-shaped, 10-46 μm high, 11-40 μm in diam at the widest part, wall of apophyses smooth, light greyish brown, slightly thicker than the columella walls; columella hemispherical, thin-walled, subhyaline to light greyish brown, 18-28 μm in diam. Sporangiospores mostly oblong, occasionally subglobose, very light brown in mass, subhyaline individually, thin-walled, smooth, 5.4-8.0 × 4.0-5.7 μm. Zygospores not seen.

Colonies on plain agar consisting of a very sparse mostly submerged growth of vegetative hyphae forming a few aerial stolons and rhizoids. Sporangioles generally developed at the ends of stolons with a rhizoidal structure below, erect, straight or slightly curved, smooth or occasionally roughened near the base and apex; internal thickening and darkening of the sporangiole wall below apophyses more pronounced. Rhizoids thin-walled, colorless, light greyish brown at the place of origin, smooth, unbranched or little branched near the place of origin, 2.3-4.6 μm in diam.

Materials examined:

PCM 597, Type, isolated from soil of a mango orchard, Deoria, U.P., India, June 1976.

Subcultures of the type culture will be sent to ATCC, CBS and NRRL.

In general morphology Apophysomyces is close to Absidia van Tieghem (Hesseltine and Ellis, 1964; Zycha, Siepmann and Linnemann, 1969). Like Absidia it has pyriform, apophysate, multispored sporangia developed on spargiophores which arise on stolons but typically not opposite rhizoids. However Apophysomyces differs significantly from Absidia in having more pronounced apophyses which are funnel-shaped to bell-shaped, in having a hyphal segment, reminiscent of the 'foot-cell' of Aspergillus, at the base of the sporangiole, and in the development of sporangiophores opposite rhizoids on plain agar medium. Furthermore, the characteristic darkening and thickening of the sporangiophore wall below the apophysis, making the lumen of the sporangiophore narrow at that point, is not found in any genus related to Apophysomyces.

The manner of development of the sporangiophores of Apophysomyces on plain agar medium is reminiscent of that described for Saksenaea vasiformis Saksena (Saksena, 1953). The sporangium-forming hypha from its end produces a rhizoidal
complex below which is submerged in agar and an erect sporangiophore develops in the opposite direction. However, the similarity stops there for the morphology of the sporangia in the two genera is entirely different.

ACKNOWLEDGMENTS

The authors thank Rev. Fr. Robert C.S.T. for translating the diagnoses into Latin. The work was supported by grant No. F.23-613/77(SR.II) from the U. G. C., India.

LITERATURE CITED

The binomials *Trichophyton longifusus* and *Trichophyton ajelloi var. nana* were found to be orthographically incorrect. The correct designations, namely *Trichophyton longifusum* and *Trichophyton ajelloi var. nanum*, are therefore proposed.

The genus *Keratinomyces* Vanbreuseghem 1952 (5), was originally differentiated from other allied genera by the absence of microconidia and by the production of long, smooth, thick-walled, cylindrical to fusiform macroconidia. Later, when many isolates recovered from soil in the United States of America were found to produce variable numbers of microconidia, and when the perfect state of the type species of the genus *Keratinomyces*, namely *K. ajelloii*, was classified by Dawson and Gentles (2) under the genus *Arthroderma* (*A. uncinatum*), where the perfect states of all other *Trichophytons* belonged, Ajello (1) rejected the genus *Keratinomyces* and transferred *K. ajelloii* to the genus *Trichophyton* as follows: *Trichophyton ajelloii* (Vanbreuseghem, 1952) Ajello 1968.

For the same reasons, the second species in the genus *Keratinomyces*, namely *K. longifusus*, described by Florian and Galgoczy (3), and *K. ajelloii var. nana*, described by Kunert and Hejtmanek (4), were transferred to the genus *Trichophyton* (1). The combinations were designated as follows:

Trichophyton longifusus (Florian and Galgoczy, 1964) Ajello 1968 and

Trichophyton ajelloi var. nana (Kunert and Hejtmanek, 1964) Ajello 1968
These two proposed binomials are now considered to be orthographically incorrect. In accordance with Recommendation 75A of the International Code of Botanical Nomenclature, the names of these two taxa are emended as follows:

from *Trichophyton longifusus* to *Trichophyton longifusum*,
and from *Trichophyton ajelloi var. nana* to
Trichophyton ajelloi var. nanum

LITERATURE CITED

MYCOFLORA SAXIMONTANENSIS EXSICCATA
CENTUM XVII

W. G. Solheim

Department of Botany
University of Wyoming, Laramie 82071

Centum XVI of the Mycoflora consists of fungi other than rusts. Of the total, 47 were collected in Wyoming. Thirteen are from the Grand Teton National Park. The remainder are distributed as follows: Arizona 29, Nevada 1, New Mexico 2, Colorado 11, Utah 3 and Idaho 7.

Included in the issue is the isotype of Emericellopsis stolkiae D. E. Davidson et Martha Christensen, No. 1522.

Clarification is needed with respect to the data published with the original description of Cercospora thermopsidis Earle (Bull. N. Y. Bot. Gard. 2:7:348. 1902). Collection data given are: "On Thermopsis arenaria, Glen Rocks, Montana, July 15, 1901, Aven Nelson, No. 4818." This should have read: On Thermopsis arinosa A. Nels., Glenrock, Converse County, Wyoming. This correction has been made by Charles Chupp in his 1953 Monograph of Cercospora, p. 337. T. arinosa is now considered a synonym of T. rhombifolia Nutt. ex Rich.

No. 1583 of this issue is C. thermopsidis Earle. The specimen was distributed, in part, with a printed label which reads "Cercospora thermopsidis Earle n. sp." This suggests that the specimen might be an isotype or holotype. The "n. sp." should, however, not have been appended as the specimen could not be considered as either of the two types. It was collected in the same month and year as the type but by a different collector and in a different county from the type, although in the same general area of Wyoming. Names of some collectors are abbreviated as follows: Wilhelm G. Solheim, WGS; Ragnhild Solheim, RS; George B. Cummins, GBC; Robert L. Gilbertson, RLG; J. Page Lindsey, JPL. Microscopic measurements are given in µm. State abbreviations are those of the U.S. Postal Service.

1 Contribution from the Department of Botany and the Rocky Mountain Herbarium of the University of Wyoming.
2 The author expresses his appreciation to the several individuals who have contributed to the collections as listed throughout the paper. Determination of some of the host species has been made by Dr. C. T. Mason, Jr., Dr. Frank W. Gould, Charlotte Reeder, Jack Humbles, R. L. Hartman and Gary Pierce, to whom grateful acknowledgement is given. Determination of several of the fungi has been made by Drs. R. L. Gilbertson and Sam Shushan, to whom the author is much indebted. Drs. R. B. Streets and L. M. Blank each supplied a named specimen. The late Dr. Roderick Sprague identified one, as did the late Prof. F. S. Earle.

1503. **PERONOSPORA ARBORESCENS** (Berk.) de By. Conidiophores 121-400 x 7-10, ultimate branches 5-10; conidia 13-22 x 12-17; oospores 21-42, wall 3.5. On leaves of *Argemone polyanthemos* (Fedde) G. B. Ownb. Wheatland cutoff, State Highway 34, near Bluegrass River, Platte Co., WY, 26 June 1962. WGS 6261.

1512. **PERONOSPORA PARASITICA** Pers. ex Fr. Conidiophores 246-400 x 10-14; conidia 18-28 x 16-23. Mostly on stems in inflorescences of *Descurania pinnata* (Walt.) Britt. Colossal Cave Co. Park, Rincon Mts., Pima Co., AZ, 22 Mar. 1973. RLG, GBC & JPL 10943. Numbers 1511 and 1512 occur on the same host. The effect of the fungus on the host is, however, quite different. In 1511 it is primarily the leaves which are affected while in 1512 the stems are hypertrophied and greatly deformed.

EUROTIALES

PYRENYMYCETES AND DISCOMYCETES

1524. ERYSPHE CICHORACEARUM DC. Cleistothecia 104-150 diam, wall cells 10-17; asci 55-65 x 24-31; ascospores 24-28 x 15-16. On leaves

1533. Valsa nivea Hoffm. ex Fr. Asci fusiform, 36-43 x 5.5-6; ascospores biseriate, curved, 8.3-10 x 1.1-1.5. On dead, standing Populus tremuloides Michx. Near Monarch Pass, Gunnison-Chaffee County line, CO, 18 June 1935, alt. 9,000 ft. P. F. and V. L. Shope 908. Determined by Sam Shushan.

1537. Dasyscypha fuscosanguinea Rehm. Asci 76-104 x 7-8, ascospores 11-16 x 3.5-6. On twigs of Pinus contorta Doug. ex Loud. 9.2 miles north of junction at Jackson Lake Lodge, Grand Teton Nat. Park, WY, 29 June 1955, alt. 6,850 ft. WGS & RS 3746.
1538. DASYCYPHA OBLONGISPORA Hahn et Ayers. Ascii 66-80 x 7-8, ascosporas 8-12 x 4-6. On bark of fallen Pinus contorta Doug. ex Loud. 4.2 miles west of entrance to Medicine Bow Nat. Forest on Laramie-Fox Park Road, below Dry Park, Medicine Bow Mts., Albany Co., WY, 25 June 1970, alt. 8,900 ft. WGS & RS 6943.

1539. DISCINA ANGILIS (Pers.) Sacc. Apothecia 2-7 cm diam; ascii 350-537 x 24-28; ascosporas with one large central vacuole, 34-42 x 13-17. On soil, wood and conifer needles in Pinus contorta Doug. ex Loud. forest. 4.2 miles west of entrance to Medicine Bow Nat. Forest on Laramie-Fox Park Road, below Dry Park, Medicine Bow Mts., Albany Co., WY, 25 June 1970, alt. 8,900 ft. WGS & RS 6892.

1540. GEOPHYXIS CUPULARIS (L.) Sacc. Apothecia smooth; ascii cylindrical, 208-225 x 10-12; ascosporas 14-21 x 8-10; paraphyses slender, as long as asci, slightly inflated at tip. On soil in burned over area. French Creek, Medicine Bow Mts., Carbon Co., WY, 17 July 1961, alt. 9,400 ft. WGS & RS 5909.

1543. PSEUPOPLECTANIA NIGRELLA (Pers.) Fckl. Apothecia disciform to slightly saucershaped or with cup, 4-20 mm across, underside with gray to brown-black, smooth hairs; paraphyses filiform, slightly enlarged at tip to slightly bulbous, hyaline below, brown to olive-brown above, about 3-4 diam; ascii cylindrical, 246-325 x 13-17; ascosporas sphaerical, hyaline, no oil drop, 11-14 diam. Among mosses, lichens and pine needles on soil in coniferous forest. Along stream, 4.2 miles from east entrance to Medicine Bow Nat. Forest, east of Dry Park, Medicine Bow Mts., Albany Co., WY, 25 June 1970, alt. 8,900 ft. WGS, RS & V. Solheim 6908.

USTILAGINALES AND TREMELLALES

1544. ENTYLOMA COMPOSITARUM Farl. Chlamydoasporas smooth, 9-12, wall 1-1.5. On leaves of Erigeron speciosus (Lindl.) DC. Host determined by Gary Pearce. North of Research Station pasture, Grand Teton Nat. Park, WY, 4 July 1955, alt. 6,750 ft. WGS & RS 3849.

1545. ENTYLOMA WINTERI Linh. On Delphinium occidentale (Wats.) Wats. North Ridge up Pilgrim Creek, Teton Co., WY, 21 July 1956, alt. 7,000 ft. WGS & RS 4603.

1547. USTILAGO HYPODYTIS (Schlecht.) Fr. On Stipa comata Trin. et Rupr. Wheatland Cutoff, State Highway 34, Laramie Mts., Albany Co., WY, 30 Sept. 1956, alt. 6,100 ft. WGS & RS 4667.

1549. GUEPINIOPSIS ALPINUS (Tracy et Earle) Brasfield. On dead conifer twigs and stems. 19.4 miles from Biological Research Station on road to Togwotee Pass, Wind River Mts., Teton Co., WY, 3 July 1956,
1550. CONIOPHORA CORRUGIS Burt. On bark of fallen conifer. 10.5 miles north of junction at Jackson Lake Lodge, Grand Teton Nat. Park, WY, 28 June 1971, alt. 6,800 ft. WGS & RS 7075. Determined by RLG.

1551. CONIOPHORA CORRUGIS Burt. On bark of fallen Pinus contorta Dougl. ex Loud. Biological Research Station, Grand Teton Nat. Park, WY, 12 Aug. 1957, alt. 6,750 ft. WGS & RS 5333. Determined by RLG.

1554. POLYPORUS DICHROUS Fr. On fallen Pinus contorta Dougl. ex Loud. 9.2 miles north of junction at Jackson Lake Lodge, Grand Teton Nat. Park, WY, 26 June 1955, alt. 6,850 ft. WGS 3716.

FUNGI IMPERFECTI

SPHAEROPSISDALES

1559. CYTOSPORA CORNI West. Conidia 6-8 x 1-1.5. On twigs of Cornus stolonifera Michx. 1703 Kearney, Laramie, Albany Co., WY, 9 June 1971, alt. 7,150 ft. WGS 7063.

1561. PHYLLOSTICTA BRUNNEA Dearn. et Barth. Pycnidia amphigenous, effused, abundant, 104-140; conidia bacilliform, straight or slightly curved, 5-6.5 x 1-1.5. (Agrees with F. Columb. 5040, Isotype). On leaves of Populus fremontii Wats. Indian Creek Winter Sports Area, Prescott Nat. Forest, south of Prescott, Yavapai Co., AZ, 22 Oct. 1956. P. D. Keener. Determined by WGS.

1562. SCAPHIDIUM BOUTELOUAE Clements. Conidia clavate, dilute olivaceous, straight or slightly curved, 1-septate, slightly constricted

1566. **SEPTORIA SIGNALENSIS** Solh. Pycnidia 93-139, ostiole 33-66; conidia 33-78 x 2.8-3.5, 0-1-septate. On leaves of *Symphoricarpus vaccinioideus* Rydb. This is a new host for this fungus. Howard Spring Camp Ground, Targhee Nat. Forest, Fremont Co., ID, 11 July 1957, alt. 7,000 ft. WGS & RS 4978.

MELANCONIALES

1572. **SEPTOGLOEUM RHOPALOIDEUM** Dearn. et Bisby. Acervuli hypophyllous, subsphaerical to elliptical, 140-460 x 104-306; conidia 34-83 x 9-11, 1-4-septate. On leaves of *Populus tremuloides* Michx. Road from Pearl, CO into Hayden Division, Medicine Bow Nat. Forest at junction with Big Creek Road, 6.1 miles north of CO-WY State line, Sierra Madre Mts., Carbon Co., WY, 31 Aug. 1966. WGS & E. Andrews 6465.

1574. **CERCOSPORA BETICOLA** Sacc. On leaves of *Beta vulgaris* L., sugar beet. United States Department of Agriculture Sugar Beet Experiment Farm, Fort Collins, CO, 4 Oct. 1930. WGS 79.

1577. **CERCOSPORA FRASERAE** Ell. et Ev. Conidiophores 20-30 x 2.5-3.5; conidia 73-150 x 2.5-4, 2-8-septate. On leaves of *Swertia radiata* (Kellog) Kuntze. Howard Spring Camp, Togwotee Nat. Forest, Fremont Co., ID, 11 July 1957, alt. 7,000 ft. WGS & RS 4961.

1580. **CERCOSPORA ITHACENSIS** Chupp. Conidiophores 23-43 x 4-5.5; conidia 33-106 x 3-5.5, 0-1-4-septate. On leaves of *Geranium viscosissimum* Fisch. et Mey. 0.5 mile above Cliff Creek, Hoback Canyon, Sublette Co., WY, 15 July 1957, alt. 6,400 ft. WGS & RS 5050.

1582. **CERCOSPORA SYMPHORICARPUS** Ell. et Ev. Conidiophores 24-35 x 3.5-4; conidia 25-43 x 4-5, 1-3-septate. On leaves of *Symphoricarpos* sp. Moose Ponds west of Moose, Grand Teton Nat. Park, WY, 8 July 1955, alt. 6,500 ft. WGS & RS 3904.

1584. **DIDYMARIA CLEMATIDIS** Cke. et Harkn. Conidiophores hypophyllous, densely tufted, tufts up to 110 in diam; conidia 20-38 x 7-11, 0-1-septate. On leaves of *Clematis ligusticifolia* Nutt. ex T. et G. Bates Creek, State Highway 487, about 12 miles southeast of State Highway 220, Natrona Co., WY, 14 Sept. 1969, alt. 5,000 ft. WGS & RS 6843.

1585. **HADROTICHUM GLOBIFERUM** (Ell. et Ev.) J. J. Davis et *Phyllosticta ferax* Ell. et Ev. a) Conidiophores 24-35 x 5-7; conidia...

1586. **ADROTRICHIUM GLOBIFERUM** (Ell. et Ev.) J. J. Davis et *Phyllosticta ferax* Ell. et Ev. a) Conidiophores densely tufted, about 34 x 6-7; conidia 12-16 diam. b) Pycnidia 93-139; conidia 3.5-4.5 x 1. On leaves of *Lupinus parviflorus* Nutt. ex Hook. et Arn. Signal Mtn., Grand Teton Nat. Park, WY, 22 July 1955, alt. 7,150 ft. WGS & RS 4091.

1588. **OVULARIA MONOSPORA** (West.) Pound et Clements. Conidiophores with several spore scars, 30-73 x 3.5-4.5; conidia clavate, 22-31 x 7.5-10. On leaves of *Rumex crispus* L. East of dead end of North Columbus Blvd., Tucson, Pima Co., AZ, 14 May 1968, alt. 2,300 ft. WGS & RS 6754.

1589. **OVULARIA MONOSPORA** (West.) Pound et Clements. Conidiophores 44-90 x 3-4; conidia 13-42 x 5.5-11. On leaves of *Rumex hymenosepalus* Torr. Roadside, Oracle Road just north of junction with Tangerine Road, Pima Co., AZ, 7 Apr. 1968, alt. 2,500 ft. WGS & RS 6714.

1593. **RAMULARIA IONOPHILA** J. J. Davis. Conidiophores 30-83 x 3-4.5; conidia 20-53 x 3-4.5, 0-1-3-septate. On leaves of *Viola nuttallii* Pursh. var. *linguaefolia* (Nutt.) Jepson. Howard Spring Camp, Targhee Nat. Forest, Fremont Co., ID, 11 July 1957, alt. 7,000 ft. WGS & RS 4982. First report for ID.

1594. **RAMULARIA PUNCTIFORMIS** (Schlecht.) Hoehn. Conidiophores 20-33 x 3-3.5; conidia 17-27 x 3.5-5. On leaves of *Epilobium angustifolium* L. Howard Spring Camp, Targhee Nat. Forest, Fremont Co., ID, 11 July 1957, alt. 7,000 ft. WGS & RS 4958.

1595. **RAMULARIA MENTHICOLA** Sacc. Conidiophores 20-40 x 3-3.5, 0-1-septate; conidia 17-37 x 3-4.5. On leaves of *Mentha arvensis* L. Four miles west of ID-WY State line, east of Ashton, Targhee Nat. Forest, Fremont Co., ID, 2 Aug. 1957, alt. 6,250 ft. WGS & RS 5270.

1596. **RAMULARIA SEROTINA** Ell. et Ev. Conidiophores 24-38 x 2.5-5.5; conidia 11-28 x 2.5-3, 0-1-septate. On leaves of *Solidago canadensis* L. Host determined by R. L. Hartman. Moose Ponds west of Moose, Grant Teton Nat. Park, WY, 2 Aug. 1955. WGS & RS 4227.

1597. **RAMULARIA SHELDONII** Trott. Conidiophores 20-60 x 3-3.5, 0-1-septate; conidia 15-41 x 3.5-5.5. On leaves of *Delphinium occidentale* (Wats.) Wats. Howard Spring Camp, Targhee Nat. Forest, Fremont Co., ID, 11 July 1957, alt. 7,000 ft. WGS & RS 4959.

ADDENDUM

Dr. Solheim died in May, 1978 (Mycologia 71, 1979). Centum XVI and Centum XVII have been edited for publication by Martha Christensen, R. L. Gilbertson and G. B. Cummins. We consider that Dr. Solheim contributed more to mycological knowledge of the Rocky Mountain region than any other individual. Mycoflora *Saximontanensis* Exsiccata serves as a fitting memorial to his life's work.
MYCOFLORA SAXIMONTANENSIS EXSICCATA
CENTUM XVII

W. G. Solheim

Department of Botany
University of Wyoming, Laramie 82071

George B. Cummins

Department of Plant Pathology
University of Arizona, Tucson 85721

The rusts which make up the seventeenth century of Rocky Mountain Fungi are distributed as follows: Canada 2, Montana 5, Wyoming 42, Colorado 13, Utah 3 and Arizona 35.

Five of the collections were made by Ernest P. Walker, Assistant Director, National Zoological Park, Smithsonian Institution, 1930-56. From 1911-13 Walker made a survey of the birds of Wyoming and was an assistant in the zoological laboratory at Wyoming. During parts of 1912-13 he did some botanical collecting in Colorado and Utah. These collections were deposited in the Rocky Mountain Herbarium from where distributions of duplicates were made. State abbreviations are those of the U.S. Postal Service. Names of some collectors are abbreviated as follows: George B. Cummins, GBC; Robert L. Gilbertson, RLG; Ragnhild Solheim, RS; Wilhelm G. Solheim, WGS.

1/ Contribution from the Department of Botany and the Rocky Mountain Herbarium of the University of Wyoming and from the University of Arizona Agricultural Experiment Station.

W. S. Phillips 6551. This fungus is common in the mountains of southeastern Arizona and is known also from southern New Mexico, the Big Bend region of Texas and Sonora, Mexico. It is macrocyclic and autoecious.

1621. GYMNOSPORANGIUM KERNIANUM Bethel III. On Juniperus deppeana Steud. Molino Basin, Santa Catalina Mts., Pima Co., AZ, 23 Mar. 1973. RLG 10945. This species occurs in other mountains of southeastern AZ, but no aecial stage has been found. In fact, species of Amelanchier are not known in the area.

1622. GYMNOSPORANGIUM NIDUS-AVIS Thaxt. III. On Amelanchier alni-

1623. NYSSOPSIS CLAVELLOSA (Berk.) Arth. III. On Aralia racemosa L. Upper Carr Canyon, Huachuca Mts., Cochise Co., AZ, 3 Oct. 1975. GBC 75-46. This is the only locality in the Southwest where this rust fungus has been found. It was first collected in 1909 by L. N. Goodding who contributed many records of southwestern species.

1629. PHRAGMIDIUM MONTIVAGUM Arth. I, II, III. On Rosa acicularis Lindl. Schwin Conference Camp Road, Dubois, Fremont Co, WY, 8 Aug. 1969, alt. 6,600 ft. WGS & RS 6811.

About one mile down on Crow Creek, from road between Vedauwoo and Happy Jack Road, Laramie Mts., Albany Co., WY, 5 July 1974. WGS, RS & Nancy Hermann 7405.

1644. **PUCCINIA DISTORTA** Holw. III. On *Hyptis emoryi* Torr. Near upper end of Apache Lake, Salt River, Maricopa Co., AZ, 24 Oct. 1975. GBC 75-49. This species, which is common in Mexico, was collected previously in Arizona by L. N. Goodding in 1920 in the Estrella Mts., also in Maricopa Co., near Phoenix.

1645. **PUCCINIA DURANGENSIS** Cumm. II, III. On *Stipa pringlei* Scribn. Near upper end of Carr Canyon Road, Huachucha Mts., Cochise Co., AZ, 3 Oct. 1975. GBC 75-47. This and a collection of *Piptochaetium fimbriatum* (H.B.K.) Hitchc. from the Chiricahua Mts. of Cochise Co. are the known records for the U.S. It was described and is otherwise known (Cumnins, *The Rust Fungi of Cereals, Grasses and Bamboos*, p. 380. Springer-Verlag. 1971) from Durango State, Mexico on *P. fimbriatum*.

17 Apr. 1973. GBC 73-59. This is the first rust fungus recorded on Baileya. In early season, acedia and uredinia are produced on Baileya and Psilostrophe but are soon masked by telia.

1666. **Puccinia Laschii** Lagerh. II. On *Cirsium*. Highway 82, 4 miles southwest of Sonoita, Santa Cruz Co., AZ, 14 May 1968, alt. 4,500 ft. WGS & RS 6752. *Puccinia cirsii* Lasch, 1859, under which this fungus has passed, is antedated by *P. cirsii* Kirch., 1856 (see Savile, Can. J. Bot. 48:1574-1576. 1970). *P. laschii* sometimes is treated as a synonym of *P. calcitratae* DC.

1677. **PUCCINIA RECONCITA** Rob. ex Desm. O, I. On *Hydrophyllum capitatum* Douglas ex Bent. To left of Pilgrim Creek, at base of ridge, Grand Teton Nat. Park, WY, 1 July 1956, alt. 6,850 ft. WGS & RS 4478.

1679. **PUCCINIA SENECIONIS** Lib. I, III. On *Senecio crassulus* A. Gray. Lost Man Lake Trail, 1.5 miles from Lost Man Camp Ground, east of Aspen, CO, 29 July 1975. GBC 75-17.

1684. **PUCCINIA XANTHII** Schw. On *Ambrosia (Frauneriia) confertafloria* (DC.) Rydb. This is the first record of this rust on this host. East end of North Columbus Blvd., Tucson, Pima Co., AZ, 14 May 1968. WGS 6755.

1691. UROMYCES INTRICATUS Cooke O, I. On Eriogonum brevicaule Nutt. About 1.4 miles north of bridge on Little Medicine Bow River, 5 miles north of Medicine Bow, WY, State Highway 487, 2 July 1967, alt. 7,000 ft. WGS & RS 6591.

1698. UROMYCES PSORALEAE Peck 0, I. On Psoralea lanceolata Pursh. About 2.5 miles south of Burns, Laramie Co., WY, 17 June 1960, alt. 5,400 ft. WGS 5794.

1699. UROMYCES PUNCTATUS Schroet. II. On Astragalus lentiginosus Dougl. Tangerine Road about 1/2 mile from Oracle Road, Tucson, AZ, 7 Apr. 1968, alt. 2,700 ft. WGS & RS 6717.

NOTES ON HYPHOMYCETES XXX.
ON THREE SPECIES OF IDRIELLA.

G. Morgan-Jones

Department of Botany and Microbiology
Auburn University Agricultural Experiment Station
Auburn, Alabama 36830, U.S.A.

ABSTRACT

Idriella angustispora Morgan-Jones and I. bambueae Morgan-Jones, two new species of Idriella Nelson and Wilhelm, are described, illustrated, and compared with other species of the genus. Idriella variabilis Matsushima is described and illustrated from a collection made in Alabama.

INTRODUCTION

The generic name Idriella Nelson and Wilhelm was established for a single species, I. lunata, isolated from a root rot of strawberry. The fungus was recognized as the causal organism of this disease for which black, sunken lesions are symptomatic (Nelson and Wilhelm, 1956). The genus is characterized by possession of polyblastic, sympodial, pigmented, denticulate conidiogenous cells bearing hyaline, lunate or falcate conidia. Idriella lunata also produces a chlamydospore state to which Ellis (1971) applied the name Trichocladium.

The genus remained monotypic until Ram (1970) and Vittal (1970) each added one species to it. Idriella couratarii Ram was described from isolates derived from wood samples of Couratari sp. in Brazil whilst I. vandlurensis Vittal was collected in leaf litter of Capparis sp. in India. Both species have similar characteristics to I. lunata differing only in a few details, perhaps the most important of which is conidium length. The presence of a single transverse septum in the conidium of I. vandlurensis and possession of septate conidiophores were cited as distinguishing characteristics of this species. In addition no chlamydospores were described. I. couratarii was described as having intercalary chlamydospores borne in irregular chains. These are not identifiable with the genus Trichocladium Harz.
Matsushima (1971a, 1971b) enlarged the genus *Idriella* further by the addition of three species collected in New Guinea. These are *I. mycogonoidea* and *I. variabilis*, isolated from garden and woodland soils respectively, and *I. ramosa*, collected on rotten leaves of an unnamed broad-leaved tree and grown on sterilized leaves of *Musa paradisiaca*. The specific epithet *mycogonoidea* was derived from the fact that the chlamydospores of this taxon are similar to those characteristic of the genus *Mycogone Link*. The chlamydospores of *I. ramosa* and *I. variabilis*, however, resemble those figured by Ram for *I. couratarii*.

Kimbrough and Atkinson (1972) discovered a connection between the discomycete *Hymenoscyphus caudatus* (Karsten) Dennis and an *Idriella* sp. Cultures grown from single ascospores of the former produced a conidial state closely similar to *I. couratarii* and *I. variabilis*.

A sixth species, *I. desertorum*, isolated from desert soil from Egypt, was added subsequently by Nicot and Mouchacca (1972). This produces chlamydospores resembling those of *I. lunata*. Some further account of the cultural characteristics of *I. desertorum* was provided by Gol (1972).

Sutton et al (1972) in a study of *Microdochium Sydow*, to which three species were added, noted the similarities between this genus and *Idriella*. A possible merger of these two genera together with *Chloridiella Arnaud*, whose common characteristics with *Idriella* had been pointed out earlier by Nicot and Charpentie (1971), was suggested. Judgment on the advisability of considering them synonymous was, however, reserved until such time as more details of behaviour in culture and on natural substrata are available. *ArxieZZa lunata* Ruscoe was recognized to be incorrectly classified in *ArxieZZa Papendorf* and to be more appropriately placed in *Idriella*. To avoid creating a later homonym of *Idriella lunata* Nelson and Wilhelm by transfer of Ruscoe's binomial a new name, *I. australiensis*, was proposed for this taxon, this becoming the seventh species of *Idriella* published.

Mouchacca and Samson (1973) subscribed to the view that *Microdochium* and *Idriella* should be maintained as separate genera when they added two new species to the former.

Matsushima (1975) reported that *I. variabilis* is indistinguishable in pure culture from *Circinotrichum fertile* Pirozynski and Hodges. *C. fertile* was transferred into *Idriella* as *I. fertilis* and *I. variabilis* listed as a synonym in spite of the fact that the latter name, published in 1971, predates *C. fertile* by two years. In the same publication Matsushima described and illustrated three additional *Idriella* species but without applying any specific epithets to them. One of these (MFC -4867) was noted as being similar to *Microdochium caespitosum* Sutton, Pirozynski and Deighton. Sutton et al (1972) had previously drawn attention to a similarity between *M. caespitosum* and *I. vandalurensis*.
although the conidium length measurements given for his collection (20 - 30 µ) differ from those given in the type description of this species (13 - 23 µ).

During the course of an investigation of leaf litter fungi associated with Quercus nigra L. and Bambusa sp. in Alabama a number of collections assignable to Idriella have been obtained. There are two taxa among these which differ significantly from the species of this genus described hitherto. New names for them are established herein. Another is identified as I. variabilis.

TAXONOMIC PART

Idriella angustispora sp. nov. (Fig. 1)

Coloniae effusae, brunneae, pilosae. Mycelium partim superficiale, partim in substrato immersum, ex hyphis ramosis, septatis, hyalinis vel pallide brunneis, laevibus, 1.5 - 4 µ crassis compositum. Chlamydosporae terminales vel intercalares, plerumque catenatae, aggregatae, abundantes, globosae, ovoideae vel ellipsoideae, crassi tunicatae, leviae, brunneae. Conidiophora macronemata, aggregata, ex chlamydospora et hyphis repentibus oriunda, stipite principali non ramoso, cylindrica, erecta, recta, brunnea vel pallide brunnea, apicem versus subhyalina, septata, usque ad 48 µ longa, 3 - 4 µ crassa. Cellulae conidiogenae holoblasticae, discretae, sympodiales vel synchronicae, subhyalina vel hyalina, cylindricae vel ampulliformes, usque ad 15 µ longae, 2 - 3 µ crassae; apex nodosus. Conidia sicca, acroleurogena, falcata, continua, hyalina, laevia, 29 - 32 X 1 - 1.5 µ.

Colonies effuse, brown, hairy. Mycelium partly superficial, partly immersed in the substratum, composed of branched, septate, hyaline to pale brown, smooth, 1.5 - 4 µ wide hyphae. Chlamydospores terminal or intercalary, frequently in chains, crowded, abundant, globose, ovoid or ellipsoid, thick-walled, smooth, brown. Conidiophores macronematous, mononematous, crowded, arising from the chlamydospores or from superficial repent hyphae, main stipe unbranched, cylindrical, erect, straight, pale brown to brown, subhyaline towards the apex, septate, up to 40 µ long, 3 - 4 µ wide. Conidiogenous cells holoblastic, discrete, in groups of three or four at the tip of the conidiophore stipe, sympodial or synchronous, cylindrical to ampulliform, up to 15 µ long, 2 - 3 µ wide; apex nodose. Conidia dry, acroleurogena, falcate, continuous, hyaline, smooth, 29 - 32 X 1 - 1.5 µ.

On fallen leaves of Quercus nigra L.; N. America.
FIGURE 1. Idriella angustispora

I. angustispora differs from *I. ramosa*, a morphologically similar species, in several respects. Its conidia have a greater uniformity of size and, although falling within the length range of *I. ramosa*, are appreciably narrower. Furthermore the conidiophores of *I. angustispora* have an unbranched main stipe bearing a single terminal whorl of a few conidiogenous cells, quite different from the abundantly branched conidiophores of *I. ramosa*.

Idriella bambusae sp. nov. (Fig. 2).

Colonies effuse, fuscae vel atrae. Mycelium partim superficiale, partim in substrato immersum, ex hyphis ramosis, hyalinis vel pallide brunneis, laevibus, 2 - 4 µ crassis compositum. Stroma plectenchymatum ex cellulis pallide brunneis vel brunneis compositum. Chlamydosporae terminales vel intercalares, plerumque catenatae, ovoideae vel ellipsoidae, crassitunicatae, leviae, brunneae. Conidiophora macronemata, mononemata, ex stroma et hyphis repentibus singulatim vel in caespitulos pusillos oriunda, simplicia, interdum ramosa, cylindrica, erecta, recta, subhyalina vel pallide brunnea, versus apices pallidiora, leavia, usque ad 32 µ longa, 2.5 - 3.5 µ crassa, septis paucis praedita. Cellulae conidiogenae holoblasticae, discretae, sympodiales vel synchronicae, ampulliformes usque ad 13 µ longa, 2.5 - 3 µ latae, supernae attenuatae, 1 - 1.5 µ latae; apex nodosus, denticulatus. Conidia sicca, acropyleurogena, ex denticulis terminalibus successivis singulatim producta, falcata, continua, hyalina, leavia, 17 - 22 X 1 - 1.5 µ.

In caulibus emortuis Bambusae, Auburn, Lee County, Alabama, April 1978, R. Munsey, AUA, holotypus.

Colonies effuse, brownish to black, spreading. Mycelium partim superficial, partim immersed in the substratum, composed of branched, septate, hyaline to pale brown, smooth, 2 - 4 µ wide hyphae. Stroma plectenchymatic, flat, repent, composed of pale brown to brown, irregular cells, superficial. Chlamydospores terminal or intercalary, frequently in chains, ovoid to ellipsoid, thick-walled, smooth, brown, abundant. Conidiophores macronematus, mononematus, arising singly or in loose fascicles of a few from stromatic cells or from superficial, repent hyphae, simple or sometimes branched, cylindrical, subhyaline to pale brown, paler distally, smooth, up to 32 µ long, 2.5 - 3.5 µ wide, usually with one or two septa especially when arising from hyphae. Conidiogenous cells holoblastic, discrete, sympodial to synchronous, narrowly ampulliform, up to 13 µ long, 2.5 - 3 µ wide at the base, narrowed to 1 - 1.5 µ wide distally, but slightly inflated at the extreme apex and bearing a number of small denticles each of which produces a single conidium. Conidia dry,
FIGURE 2. *Idriella bambusae*
acropleurogenous, produced in sympodial succession, falcate, curved more abruptly above, attenuating to a pointed apex, narrowly truncate at the base, continuous, hyaline, smooth, 17 - 22 X 1 - 1.5 μ.

On dead stems of Bambusa sp.; N. America.

Specimen examined: on Bambusa sp., Auburn, Lee County, Alabama, April 1978, R. Munsey, AUA, type.

Of the species of Idriella described to date I. bambusae most clearly resembles I. couratarii and I. variabilis. Its chlamydospores are very similar to those of these two species and there is an appreciable overlap in conidium length among the three. The conidia of I. bambusae however show less variation in length than those of either I. couratarii or I. variabilis being consistently towards the upper limit of their range and frequently several microns above. The conidia of I. bambusae are also narrower than those of the other two species. Additional distinguishing characteristics of I. bambusae are a greater degree of attenuation and curvature toward the upper third of the conidia and the presence of a narrow, but easily discernible, truncation at the base. It also differs from I. variabilis in having much shorter conidiophores whose apices are not as inflated but which bear prominent denticles.

Idriella variabilis Matsushima, Microfungi of the Solomon Islands and Papua-New Guinea, 31, 1971 (Fig. 3).

= Idriella fertilis (Pirozynski and Hodges) Matsushima, Icones microfungorum a Matsushima lectorum 86, 1975.

Colonies effuse, brown. Mycelium partly superficial, partly immersed in the substratum, composed of branched, septate, hyaline to pale brown, smooth, 1 - 5 μ wide hyphae; sometimes aggregated irregularly to form stromatic tissue. Chlamydospores terminal or intercalary, frequently in chains, abundant, subglobose to ellipsoid, thick-walled, smooth, brown. Conidiophores macronematous, mononematous, crowded, arising in fascicles of a few from stromata or from superficial repent hyphae, cylindrical, unbranched, erect, straight, pale brown to brown, paler towards the apex which is subhyaline, up to 90 μ long, 3 - 4 μ wide. Conidigenous cells holoblastic, integrated, terminal, cylindrical, up to 23 μ long, 3 μ wide at the base, narrowed to 1.5 - 2 μ wide distally; inflated, nodose, 2.5 - 3 μ wide at the extreme apex. Conidia acropleurogenous, produced in sympodial succession, subfalcate, continuous, hyaline, smooth, 20 X 2 μ.

On dead leaves of Castanopsis, Persea, Quercus, Sequoia and Tsuga, and from soil; Japan, N. America, Papua-New Guinea.
FIGURE 3. *Idriella variabilis*

ACKNOWLEDGMENT

I thank Dr. J. Leland Crane, Illinois Natural History Survey, for reviewing the manuscript.

REFERENCES

NOTES ON HYPHOMYCETES. XXXI.
CHAETOPSINA AUBURNENSIS SP. NOV.

G. Morgan-Jones

Department of Botany and Microbiology
Auburn University Agricultural Experiment Station
Auburn, Alabama 36830, U.S.A.

ABSTRACT

Chaetopsina auburnensis Morgan-Jones, a new species, is described and illustrated from collections made on fallen leaves of Quercus nigra L. in Alabama. It is compared with several fungi possessing similar morphologies.

INTRODUCTION

A number of dematiaceous hyphomycetes that produce phialidic conidiogenous cells directly from cells of robust, erect setae are known. Such fungi are classified in the genera Chaetopsina Rambelli, Codinaeopsis Morgan-Jones, Cryptophiale Pirozynski, Gonytrichum C.G. & F. Nees ex Pers., and Zanclospora Hughes and Kendrick. In Circinotrichum fertile Pirozynski and Hodges, which Matsushima (1975) considered to be the same fungus as Idriella variabilis Matsushima, the conidiogenous cells originate in the same way but in this taxon they are polyblastic.

A fungus, apparently undescribed, producing monophialidic conidiogenous cells in the manner of the above named genera has been collected on three occasions on fallen leaves of Quercus nigra in Alabama. It is considered best assigned to the genus Chaetopsina. It is, however, readily distinguishable from the two species of that genus described hitherto.

TAXONOMIC PART

Chaetopsina auburnensis sp. nov. (Figs. 1 and 2)

Coloniae effusae, pilosae, atrobrunneae vel nigrae. Mycelium immersum, ex hyphis septatis, ramosis, pallide brunneis, laevibus, 2 - 4 μ crassi conidiosp. Setae singulatim dispersae vel fasciculatae, simplices vel ramosae, erectae, rectae vel curvae, septatae, laeves, crasse
FIGURE 1. *Chaetopsina auburnensis.*
Fertile setae (conidiophores)
tunicatae, bruneae, superne gradatim angustiores et pal-
diiores, apicem versus subhyalinae, usque ad 400 μ longae,
6 - 7 μ crassae, basi 12 - 15 μ, apice 2 μ crassae, cellulas
conidiogenas e latere gerentes. Cellulae conidiogenae
(monophialides) discretae, determinatae, circa setas in
fasciculis exorientes, ampulliformes, laeves, pallide
bruneae. Conidia hyalina, asepata, fusiformia, recta vel
leviter curvata, laevia, 4 - 8 X .5 - .75 μ.

In folis dejectis Quercus nigrae, Auburn University,
Lee County, Alabama, April 1976, E.G. Ingram, AUA,
holotypus.

Colonies effuse, hairy, dark brown or blackish.
Mycelium immersed, composed of septate, branched, pale brown,
smooth hyphae 2 - 4 μ wide; sometimes aggregated into
loosely arranged stromata of ellipsoid to subglobose, thick-
walled, 5 - 7 μ wide cells. Setae scattered singly or some-
times in loose fascicles of a very few, simple or branched,
erect, straight or slightly curved, septate, brown, gradually
narrowing and becoming paler distally, subhyaline at the
 apex, thick-walled, up to 400 μ long, 6 - 7 μ wide in the
middle part, 12 - 15 μ wide at the bulbous base, 2 μ wide at the
 apex; branches, of which there may be few to many,
setiform, septate, pale brown, radiating from a single
locus, up to 150 μ long, frequently intermixed at their
point of origin with subglobose stalk cells. Conidiogenous
cells monophialidic, crowded, discrete, determinate,
ampulliform to lageniform, pale brown to subhyaline, 2.5 -
5 μ wide, often with short, narrow necks, arising in dense
groups around the middle part or about two-thirds the way
up the setae, formed directly from the cells of the setae
or, more usually, from subglobose to somewhat angular, pale
brown to brown stalk cells, 4 - 6 μ in diameter. Conidia
hyaline, asepata, fusiform, straight or slightly curved,
smooth, 4 - 8 X .5 - 1 μ.

On fallen leaves of Quercus nigra; N. America.

Collections examined: (1) on Q. nigra, Auburn
University Forestry Plots, Auburn, Lee County, Alabama,
April 1976, E.G. Ingram, AUA, type; (2) on Q. nigra,
Chewacla State Park, Lee County, Alabama, May 1976, G.
Morgan-Jones, AUA; (3) on Q. nigra, same location as type,

Chaetopsina auburnensis shows considerable variation
in the morphology of its setae. In a few instances setae
have been observed bearing neither stalk cells nor lateral
branches. Sometimes setae bear only one or a few lateral
branches and no stalk cells. Where there are many branches
a cluster of stalk cells is also usually present, indeed
some of the branches may originate from stalk cells. Rarely,
if ever, are conidiogenous cells produced on setae bearing
branches however.
FIGURE 2. *Chaetopsina auburnensis*. Sterile setae
Lateral setal branches are known in several fungi of similar morphology. For example Pirozynski and Hodges (1973) noted the occurrence of setiform so-called 'false branches' arising from short lengths of hyphae produced laterally on the setae of Circinotrichum fertile. Encircling hyphae produced from the setose conidiophores of Codinaeopsis gonytrichoides (Shearer and Crane) Morgan-Jones sometimes behave similarly, growing out to give rise to setose branches Setose conidiophores bearing a number of setiform branches are characteristic of Gonytrichum macrocladum (Sacc.) Hughes.

Chaetopsina fulva Rambelli, the type species of Chaetopsina, was described from collections on fallen leaves of Cedrus deodara Loud., Laurus nobilis L., Carpinus and Quercus in Italy (Rambelli, 1956). It has subsequently been found in Japan on leaves of Pinus densiflora Seib. and Zucc. (Tubaki and Saito, 1969) and on Cinnamomum japonicum Sieb. and Machilus thunbergii Sieb. and Zucc. (Matsushima, 1975). There are also records of its occurrence in soil in Canada (Barron, 1968), on rotten leaves from Papua-New Guinea (Matsushima, 1971) and on fallen leaves of Persea boronica Spreng. in the U.S.A. (Pirozynski and Hodges, 1973). The fungus is characterized by possession of erect, subulate, brown, setiform conidiophores bearing short, hyaline, hypha-like lateral branches which give rise to a cluster of monophialidic, lageniform conidiogenous cells. Its conidia are simple, cylindrical and hyaline. Pirozynski and Hodges (1973) reported that the conidiogenous cells in their collection were almost globose.

Matsushima (1971) described a second species, Chaetopsina ramifera, collected on leaves of Castanopsis sp. in Papua-New Guinea. This differs from C. fulva in that the setiform conidiophore stipe produces a verticil of 1 to 4 branches of similar morphology in addition to a number of short, repeatedly branched hyphae which give rise to hyaline conidiogenous cells. The conidia are somewhat fusiform and slightly curved.

Chaetopsina auburnensis can be distinguished from both C. fulva and C. ramifera by several characteristics. The presence of dense clusters of more or less subglobose, thick-walled, brown stalk cells from which the conidiogenous cells arise is an unique feature of C. auburnensis. Other distinguishing features are the radiating setal branches and conidium size.

ACKNOWLEDGMENT

I am grateful to Dr. C.J.K. Wang for reviewing the manuscript.
REFERENCES

FOLIICOLOUS ASCOMYCETES:
3. THE STALKED CAPNODIACEOUS SPECIES

DON R. REYNOLDS
Natural History Museum
900 Exposition Boulevard
Los Angeles, California 90007 USA

SUMMARY

This study is intended as a monographic revision of stalked fungi in the taxon Capnodiaceae von Höhnel (1910) sensu von Arx and Müller (1975). Two genera are recognized. Scorias and Phragmocapnias both produce hyaline ascospores with two or more transsepta. Phragmocapnias is distinguished from Scorias by the presence of setae on the outer surface of the locule wall.

INTRODUCTION

In order to reevaluate the specific and generic concepts, all specimens cited in the literature which could be located, as well as other collections, were examined. Observations were made of all possible taxonomically significant characters. Concepts of taxa were then formulated on the basis of the resulting data analysis. Descriptions in the literature were utilized for specimen identification and in an understanding of the historical position of the species concerned. The name selected to represent my concept of a valid taxon was determined from following the International Code of Botanical Nomenclature (Stafleu, 1972). Cognizance was taken of the recommendations by the International Mycological Association Nomenclature Secretariat, prepared as a result of deliberation concluded in August 1977 at the 2nd International Mycological Congress.

The holomorphic species is basically comprised of one and possibly two components. The prime holomorphic part of the nomenclatorially valid taxonomic system is the sexual reproductive component of the life history—the teleomorphosis (Hennebert and Weresub, 1977). A second component is any asexual reproductive part of the holomorphic life history—the anamorphosis or anamorphoses. The specimens were examined for a teleomorphic documentation of a particular holomorph. Any anamorphosis demonstrated by following a protocol described below to be a
component of a holomorph was so recognized.

The taxonomically reliable structure produced by the teleomorphosis is the ascocarp. The wall and the sexual reproductive system contained within are perceived as two basic ascocarp components. Reliable wall characters which can be utilized in taxon definition are the cellular pattern of wall tissue and external and internal appendages; the characters of the sexual system relate to the ascus and the ascospores.

The tissue types used by Korf (1951) apply to the wall surrounding the hymenial locule. Appendages may develop from the exterior or interior surface of the locule wall. External appendages are seta, clypeus and stalk. The seta is a lateral to apical outgrowth which forms from a single cell during locule wall formation. In all Capnodiaceae species examined so far, the setal wall contains a melanoid pigmentation; the seta may be septate at maturity or not. The clypeus is a shield-like appendage covering the ascocarp and is not present in the capnodiaceous species discussed in this monograph. The stalk is regarded as an appendage. It differs from the seta in position and in time of formation in the development of the ascocarp. The stalk is a column of tissue which is terminated with the hymenial system surrounded by the locule walls. The stalk is similar to clypeus in that both structures begin formation before the initiation of the portion of the ascocarp which will come to contain the hymenial system. The stalk differs from the clypeus in the attachment to the locule wall. The columnate stalk tissue is always attached below the wall surrounding the hymenial locule; the shield-like clypeus has an apical to lateral attachment to the locule wall.

The hymenial system consists of asci with specialized walls. This type of ascus is characterized as bitunicate, in the sense of Luttrell (1951), and exhibits a nasse apicale (Reynolds, 1971a). An additional character is the reaction of the ascus wall to the Kohn-Korf iodine-potassium hydroxide protocol (1975). The blue coloration characteristic of a positive reaction is confined to the outer layer of the ascus and is more intense in younger asci. This suggests that the primary exoascus layer of the bitunicate ascus is reactive while the secondary endoaascus layer is not. The ascospore wall is inconsistently Kohn-Korf positive. A positive reaction is more difficult to demonstrate in older herbarium material in that more time is required for the blue color to be seen and the reaction is also less intense.

The mature ascus will contain usually eight ascospores; no surrounding cytoplasm remains. The wall is considerably reshaped to accommodate the ascospores. The nasse apicale is best observed in the ascus after the secondary wall layer, the endoaascus, has been deposited on
the inner surface of the primary wall layer, the exoascus, which is formed during the extension of the ascus mother cell. With the onset of meiosis and the subsequent ascoporogenesis, the ascus may change shape and the walls may become thinner in the lower areas. The nasse apicale may appear obscured in some mature asci and wider in some species than others.

The ascospore is best described when mature in the ascus before discharge. Spore pigmentation is a reliable character at this stage of development. A melanoid or orange to yellow brown (Kelly and Judd, 1976) pigmentation ultimately develops in all capnodiaceous species, but the time of pigment deposition in the ascospore wall is taxonomically significant. Some capnodiaceous species produce the pigmentation during ascospore maturation. In others, the pigmentation does not appear until after discharge from the ascus and the onset of the germination process. The latter ascospores are termed hyaline to indicate that the mature ascospore has no wall pigmentation before discharge from the ascus. Occasionally hyaline ascospores will be seen to germinate in the ascus and thus have developed some pigmentation; these have been mistakenly described as pigmented or having an unusual shape. A mature ascospore can be recognized by thickened outer walls, completed cross walls and a highly vacuolated cytoplasm, sometimes characterized by the presence of oil droplets. Immature ascospores by contrast have thinner walls and a dense non-vacuolated protoplast. Septation of the ascospore is also a reliable taxonomic character. The ascospore follows a distinct pattern of septum development during its development in the ascus. The first septum is formed perpendicular to the long axis of the spore and divides the protoplast into two cells. Then each half of the newly divided spore becomes once or more transversely septated. The longitudinal septa form after the transverse septa have formed. Occasionally, a collection of a particular species will produce ascospores in which the longisepta fail to appear; however, examination of many ascocarps will demonstrate the usual character. At onset of germination, a germ tube protrudes from one or more ascospore cells. Changes in ascospore morphology and color can accompany this process.

Luttrell (1951) proposed a device for organizing the Pyrenomycetes which is useful in the taxonomy of these fungi as a unifying character. Luttrell meant the centrum to refer to the characters within the ascocarp during development and at maturity. I (Reynolds, 1978b) have described the Capnodium centrum which characterizes the fungi monographed here. The major elements of this centrum type are the uniloculated ascocarp, the bitunicate ascus and the periphysoids.

The anamorphosis or anamorphoses must be demonstrated with non-intuitively derived positive proof to be a holo-
morphemic life history component in order to be taxonomically significant. Taxonomically reliable structures produced by the anamorphosis are conidia and any attendant fruit bodies. The following protocol will demonstrate the required positive proof of holomorphic pleomorphy, i.e. the relationship of any anamorphic pleomorphosis to a teleomorphosis.

1. Primary confirmation from spore production in pure culture by an isolate which is derived from one of the following sources:
 a. Ascospore from a single ascospore isolate.
 b. Conidiospore from a single ascospore isolate.
 c. Ascospore from a single conidiospore isolate.

2. Secondary confirmation, to be used in addition to #1, from spore production utilizing specimens representing an annual growth cycle which meet all of the following requirements:
 a. Produced in nature,
 b. a series of fruit bodies,
 c. obtained in chronological sequences of maturity,
 d. from a single collection site.

The secondary confirmation procedure is least desirable when used alone, but can give a basis for reasonable assumption of holomorphic pleomorphy.

Unacceptable means which rely on an intuitive assumption of holomorphic pleomorphy found in the literature include:

 a. Primae facie determination from side-by-side occurrence of several reproductive states in a single collection (e.g. McAlpine, 1896).
 b. Comparative gross morphology of sexual and asexual fruit bodies (e.g. Yamamoto, 1954b).
 c. A dependence on hyphal morphology in order to imagine organic relationships between reproductive states (e.g. Hughes, 1976).

The data for each specimen are regarded as a unit of identification. For this reason, the information is cited as written on a label without update. For example, names of geographic localities and scientific names of associated higher plants are not edited for contemporary accuracy. This approach allows specimen verification as well as correction of discrepancies in an author's original or quoted material. The label information is categorized into Collector, Location, Collection date, Associated plant, Herbarium data and Original determination. The categories where information is available are listed
sequentially; each is punctuated by semicolons and commas. The label information statement is terminated by a period.

Example: McGinty, H. A. #10: Philippines, Camarines Sur, Magarao: 20 XII 1908: Ficus bugulua: NY100*, (S), (Fungi Exsiccati Philippinensis 23); LAM501: Capnodium +.

The H. A. McGinty specimen number 10 was collected in the Philippines, Camarines Sur Province, in the town of Magarao, on 20 December 1908. The fungus was found associated with Ficus bugulua. The collection examined came from the New York Botanical Garden and has the number 100—the asterisk indicates that this is type material; the specimen originally came from the Stockholm herbarium and was number 23 in Fungi Exsiccati Philippinensis; the LAM number assigned to duplicate or slide preparation from the collection is 501. The initial determination of the collection was Capnodium; the "+" indicates that other fungi were noted in the collection.

KEY TO SPECIES

A Ascocarp appendaged with stalk and setae

PHRAGMOCAPNIAS BETLE

A' Ascocarp appendaged with stalk only B

B Ascocarp occurring singly or severally on projections from surface of hygroscopic stroma; distribution temperate North America

SCORIAS SPONGIOSA

B' Ascocarp not occurring as in B, distribution tropical to subtropical C

C Ascospores 12-17 μm x 3-6 μm

SCORIAS BRAZILIENSIS

C' Ascospores 19-28 μm x 3-6 μm

SCORIAS PHILIPPINENSIS

NOMEN HOLOMORPHOSIS GENUS:

TELEOMORPHOSIS: Ascospores hyaline, transseptate, ascus bitunicate; Hymenium basal, surrounded by wall which is internally appendaged with periphysoids and externally
appendaged with setae and stalk; Ascocarp uniloculate, ostiolate.

ANAMORPHOSIS: Incertus.

Type species: Phragmocapnias betle (Sydow and Butler) Theissen and Sydow emend. Reynolds

NOMINA SYNONYMA GENUS:

=Antennellopsis Mendoza

=Chaetoscorias Yamamoto

=Neocapnodium Yamamoto

=Neocapnodium Yamamoto

=Neocapnodium Yamamoto emend. Hughes

=Phragmocapnias Theissen and Sydow emend. Hughes

NON Phragmocapnias (Theissen and Sydow) emend. Batista and Ciferri
1963. Saccardoa 2:177. Spores were considered to be pigmented.

DISCUSSION

Spegazzini (1918) accepted Limacina Neger as having hyaline ascospores. He established Phragmocapnias as a new genus on the basis of Capnodium betle Syd. & Butl. (Sydow et al. 1917) and distinguished it from Limacina by, "...sporen braun...." He was wrong on both counts. I have seen lectotypic material of Limacina fernandeziana Neger, the type species of Limacina, and know the ascospores to be pigmented. I have also examined the C. betle holotype, as well as an isotype. The type specimen of C. betle is Stockholm (S) is delapidated in that the ascocarps are moldy and mostly overmature. The specimen in Kew (K) is
more scanty, but in the same condition. Most ascocarps in
the type material are empty, without asci and ascospores.
Ascocarps containing asci with ascospores are sparse.
Hughes (1976) correctly redescribed the ascospores as hya-
line, in contrast to the, "...dein fuscis" charateriza-
tion by Sydow and Butler. Hughes mentioned pig-
mented spores on the substratus surface without mention of
how they were determined to be ascospores. The fruit body
stalk was not recognized in Hughes' redescription from the
type material. Hughes (1976) also stated that an anamor-
phosis was, "...attached to the same hyphae..." as the
teleomorphosis. I do not accept this observation; the
skepticism I expressed earlier (1978a) concerning the intui-
tive attitude toward holomorphic pleomorphy is underscored.
In their major treatment of the Capnodiaceae (1963a), Ba-
tista and Ciferri accepted Spegazzini's definition of Ph-
ragmocapnias as having pigmented ascospores. They did not
examine the types nor authenticate material of most of the
species they included in this genus.

The Phragmocapnias ascocarp is appendaged with setae,
as Hughes (1976) also pointed out, and additionally with
stalk. The stalk is minimally present, but distinct, in
the type material, when compared to collections from the
Pacific Basin. Capnodium coffeicola Puttemans, the sup-
posed type species of the genus Trichomerium which was
listed by Hughes (1976) as a synonym of Phragmocapnias
without examination of the holotype. I examined Puttemans'
specimen in Rio de Janeiro. I do not accept Hughes' syn-
onymic placement of Trichomerium in Phragmocapnias.

The name Phragmocapnias seems problematic because of
its establishment based on a misconception of the type
species. However, I utilize Phragmocapnias with the
assumption that the recognition of hyaline ascospores in
the type species will also demand a change in the single
spore related character used to establish the genus. Spe-
gazzini (1918) should have correctly written, "sporen far-
blos." The parts of the International Code of Botanical
Nomenclature dealing with priority are in regard to a name
attached to a type and are unaffected by a different taxon
concept resulting from a redescription of that type so long
as the original holotype is clearly utilized for the same
name.

I have revised Yamamoto's contributions to a degree
that some explanation is needed. Yamamoto stated (1958a)
that all his specimens collected, "...during the period
1937-1942..." remained in Taiwan. "The collected fungi
enabled the author to carry out taxonomic as well as eco-
logical studies in the phytopathological laboratory..." in
Taiwan. He later wrote (1961), "The results of these in-
vestigations were mainly reported in the Transactions of
the Natural History Society of Formosa, Journal of the
Society of Tropical Agriculture (Formosa), Annals of the
Phytopathological Society of Japan, and Science Reports of
the Hyogo University of Agriculture during the period 1940 to 1958...." Yamamoto went to some length in order to prove his assumption that the teleomorphosis and the anamorphoses found in foliicolous colonies were holomorphic. He utilized experimental techniques involving pure culture work as well as randomly collected specimens from nature. The statements in his publications imply that definite proof was obtained of holomorphic pleomorphy in sooty mold Ascomycetes. In order to examine Yamamoto's specimens, and to verify the experimental work, I visited Japan and Taiwan. I was able to interview his former laboratory technician as well as colleagues, concerning Yamamoto's work. I examined the collections cited in his publications as well as additional ones. In addition, I obtained pure culture isolates of sooty mold fungi from Taiwan localities identical to those utilized by Yamamoto for the same purpose. Yamamoto's experimental protocol was duplicated with the Taiwan isolates.

The Yamamoto collections in Taiwan contained specimens marked "typus" for species described by other authors. No duplicate specimens of foreign collections were located in his collections representing the legitimate holotypes of these same species. I strongly suspect that Yamamoto did not see original types or other authenticated material. The material of Japanese mycologists working with Japanese sooty mold Ascomycetes was largely war destroyed.

No cultures from ascospores of Taiwan sooty mold Ascomycetes were obtained by me. Pycnidiospore derived cultures yielded asexual fruit bodies similar to those from which the conidia were derived.

Several aspects of Wataro Yamamoto's modus operandi are evident and are important to note in that they effected the taxonomy he published.

1. Yamamoto established his own "type" from a Taiwan collection for a non-Yamamoto species.

2. Yamamoto did not accurately describe the ascomycarps he utilized as the basis of several taxa.

3. Yamamoto did not obtain cultures from single ascospore isolate; ascocarps of sooty mold Ascomycetes were not produced in pure culture.

4. Yamamoto obtained cultures from single pycnidiospore isolates; conidia and fruit bodies of dematiaceous fungi and other Deuteromycetes were produced in pure culture.

5. Yamamoto failed to demonstrate a connection between a sooty mold teleomorphosis and any anamorphoses.

6. Yamamoto compared nature and pure culture derived
pycnidia with nature derived ascocarps, i.e. he intuitively determined perfect-imperfect relationships on the basis of gross morphology similarities and primae facei associations of fruit bodies found in the Taiwan collections he made.

7. Yamamoto defined taxa so as to include a teleomorphosis and anamorphoses merely assumed to be holomorphic components, i.e. without positive proof.

8. Yamamoto assigned holomorphic names to certain collections on the basis of anamorphoses present rather than a teleomorphosis.

9. Yamamoto's Taiwan and Japan publications on Taiwan fungi were done on the basis of data produced during his stay in Taiwan although his forced wartime return to Japan blocked access to his materials.

I conclude that Yamamoto's taxonomy of Taiwan fungi was highly intuitive and unsupported by the experimental work he undertook.

NOMEN HOLOMORPHOSIS SPECIES:

Phragmocapnia betle (Sydow and Butler) Theissen and Sydow emend. Reynolds.

TELEOMORPHOSIS: Ascospores hyaline, cylindrical to elliptical, with bluntly acute apexes, 16-29 x 3-5 μm, with 3 (-5) transsepta; Ascus bitunicate with nasse apical present at apex of inner wall, obclavate, 35-50 μm in length; Ascus Wall Kohn-Korf (IKI-KOH) reaction positive; Hymenium basal in locule, surrounded by wall comprised of textura angularis tissue; Locule Wall internally appended with periphyoids which are branched, septate, hyaline, present or absent at ascocarp maturity; Locule Wall externally appended with setae and subtending stalk, setae 55-115 μm x 5-6 μm, septate or not at maturity, stalk single, discoid to cylindrical, 12-40 μm. Ascocarp containing a single locule, ostiolate. 75-165 μm x 70-120 μm.

ANAMORPHOSIS: Incertus.

Type Specimen: S. Som, A. L.; East Pakistan, Dacca: 5 IV 1910: Piperis betle. Isotype Specimen: K.

NOMEN SYNONYMUM SPECIES:

=Antennellopsis mangiferae Mendoza

Antennellopsis formosa Batista and Ciferri 1963. Saccardoa 2:64. Pro Parte, teleomorphosis only.

PHRAGMOCAPNIAS SPECIES IMPERFEKTLY KNOWN:

Antennella citri Sawada
1929. Studies Citrol 3:261. The type of this species is badly damaged. No ascocarps remain in the collection. Sawada later published this species as a synonym of Antennella citrina Hara. See the discussion under Scorias. This species is probably a synonym of P. betle.

EXCLUDED SPECIES

Phragmocapnias callitris (McAlpine) Ciferri and Batista
1963. Saccardoa 2:179. The ascospores were considered to be pigmented.

Phragmocapnias crassa (Patouillard) Theissen and Sydow
emended Batista and Ciferri
1963. Saccardoa 2:179. The ascospores were considered to be pigmented.

Phragmocapnias fulignoides (Rehm) Ciferri and Batista
1963. Saccardoa 2:180. The ascospores were considered to be pigmented.

Phragmocapnias heliconiae Batista and Ciferri

Phragmocapnias inspericua (Saccardo) Batista and Ciferri
1963. Saccardoa 2:182. This species belongs in the genus Trichomerium.

Phragmocapnias juniperi (Cooke) Theissen and Sydow
1917. Ann. Mycol. 15:480. The ascospores were considered to be pigmented.

Phragmocapnias resinae (Saccardo and Bresadola)
Theissen and Sydow emend. Batista and Ciferri
1963. Saccardoa 2:182-183. The ascospores were considered to be pigmented.

Phragmocapnias salicina (Montagne) Ciferri and Batista
1963. Quaderno 3:98. This combination was published nomen nudum and was apparently to be based on Capnodium salicinum Montagne emend. Fraser (1935).

Phragmocapnias smiliciana Mendoza

SPECIMENS EXAMINED

Charles and A. Ballon. --Cuba, Santiago de Las Vegas: 18 X 1921: Durante repens: URM9129; LAM200724: Trichomerium jambosae +.

Fujikuro, Y. --Taiwan: 12 XII 1907: Thea senenis: TNU; LAM201870: Scorias capitata.

Obregon, Rafael. --Colombia, La Esperanza: V 1934: Labiatae: URI5021, (BPI); LAM200860: Antennelopsis elegans.

Rhoads, Arthur S. --USA, Florida, Dade County, Snapper Creek, between Fairchild Tropical Garden and Chapman Field: 1 III 1944: Eugenia axillaris: BPI; LAM 201519: Capnodium.

Reinking, O. A. --Thailand, Bangkok: 16 I 1920: URI5246, (BPI); LAM200723: Trichomerium jambosae +.

DISCUSSION

Yamamoto completely ignored the setal appendage projecting from the outer surface of the ascocarp wall surrounding the hymenial locule. This appendage was found on every ascocarp in each Yamamoto collection cited under the several synonyms of P. betle which was reexamined; the specimens otherwise generally fit the description proffered. The illustration (Yamamoto, 1942b, 1955b, 1957b) of the synonymic species, Neocapnodium tanakae, as having a branch multiply bearing stalked ascocarps is not representative of Taiwan material. I again note that Yamamoto redescribed this Japanese species based on Taiwan material; the illustration was a promulgation as a result of the merger of the Yamamoto redescription with the original description and illustration of Shirai and Hara (Hara, 1916). The Shirai and Hara holotype is defunct; I could not locate additional Japanese material. As indicated in the discussion under "Species incompletely known" Capnodium tanakae Shirai and Hara seems to be a valid temperate Asian species closely related to S. spongiosa.

NOMEN HOLOMORPHOSIS GENUS:

TELEOMORPHOSIS: Ascospores hyaline, transseptate; Ascus bitunicate; Hymenium basal, surrounded by wall which is internally appended with periphysoids, and externally
appendaged with stalk; Ascocarp uniloculate, ostiolate.

ANAMORPHOSIS: Incertus.

Type species: Scorias spongiosa (von Schweinitz) Fries emend. Reynolds

NOMINA SYNONYMA GENUS:

≡Antennella Theissen and Sydow 1917. Annal. Mycol. 15:47. Pro Parte, teleomorphosis only.

NOMEN HOLOMORPHOSIS SPECIES:

TELEOMORPHOSIS: Ascospores hyaline, fusiform, 15-19 μm x 5-6 μm, with 3 transsepta; Ascus bitunicate, 55-60 μm in length, nasse apicale present at apex of inner wall; Ascus Wall Kohn-Korf (IKI-KOH) reaction positive; Hymenium basal in locule, surrounded by wall comprised of textura angularis tissue; Locule Wall internally appended with periphysoids which are branched, septate, hyaline, and are present or absent at ascocarp maturity; Locule Wall externally appended with subtending stalk, forming cylindrical column measuring 100-300 μm x 25-50 μm; Ascocarp containing a single locule, ostiolate, borne on stroma surface projections, measuring 90-140 μm x 75-100 μm.

NOMEN ANAMORPHOSIS: *Incertus.*

ANAMORPHOSIS: Conidium unicellular, 8-10 μm x 2-8 μm, hyaline; conidiogenous cell enteroblastic, monophialidic or rarely not; conidiophores acropleurogenous, branched, hyaline, borne basally and laterally in cavity surrounded by walls comprised of textura prismaticata tissue; Anamorphic centrum borne internally or terminally from rostrate outgrowths on stromal surface; Fruit body ostiolate, ostiole acolluminate or with a neck measuring 35-40 μm x 75-300 μm, which is fimbriate or not.

NOMINA SYNONYMA SPECIES:

SPECIES IMPERFEKTLY KNOWN:

SPECIMENS EXAMINED

Anonymous --USA, Ohio: III: K, (Herb. M. J. Berkeley 145, in 1879); LAM200675: Scorias spongiosa. --USA, Ohio: K. (Herb. M. J. Berkeley in 1879); LAM200674, LAM 200676, UPS, (Herb. M. J. Berkeley), (Herb. E. Fries); LAM 200670, LAM200671: Scorias spongiosa. --USA, Pennsylvania: UPA, (Lenarmand); LAM200672, LAM200671: Scorias spongiosa. --Alnus: BPI; LAM201458. This is the only record known to me from the western USA. The published specimen data is regarded as unreliable. The specimen was published in Batista and Ciferri (1963) page 188 with the data, "Brown, W. H.: USA, Washington, Sellick: XII 1932." A note in the specimen packet indicates that the collection was sent by a Washington State Agriculture Department employee to V. K. Charles, who determined it as Scorias spongiosa. The sender had received the collection from Brown without collection data. Fagi and Alni: E, (Fungi Cardini 81); LAM201453: Scorias spongiosa. --FH*, (Herb. Curtis), (Herb. L. D. von Schweinitz); LAM200749: Scorias spongiosa. --E; LAM201452: Scorias spongiosa.

---USA, New York, NE of Forest Home: 12 XI 1904: CUP22845, (Flora of Cayuga Lake Basin, New York); LAM201623: Scorias

Fullerton, D. H.: USA, Maryland, Mitchellville: 2 III 1918: Fagus: CUP30540, (Plant Pathology, New York State); LAM201625: Scorias spongiosa.

Fultz, S.: USA, Massachusetts, South Amherst: 28 V 1970; Pinus strobus: MASS; LAM201595: Scorias spongiosa.

Manning, M. F.: USA, New York, New York City, Landscape Foresters Ltd.: *Pinus strobus*: NYS; LAM201575: *Scorias spongiosa*.

Overholts, L. O.: USA, Pennsylvania, Huntingdon County: 5 IX 1921: *Tsuga canadensis*: URM5158, (BPI); LAM201446.

Reddick, Donald: Summer, 1905: CUP35890, (Flora of Cayuga Lake Basin, New York 230); LAM201630: *Scorias spongiosa*.

Seaman, W.: USA, Washington, D.C.: 1875: *Fagus americana*: B, (DeThumen, Mycotheca Universalis 967); LAM201038. ILL; LAM200630. NYS; LAM201573. URM4822; LAM201444: *Scorias spongiosa*.

Seaver, F. J. and Carlos E. Chardon: Puerto Rico, Mayaguez: 24 I - 5 IV 1923: Palm: CUP, (New York Botanical Garden, Department of Agriculture and Labor of Porto Rico, West Indian Exploration 405), (Explorations of Porto Rico 1670); LAM201635; *Scorias spongiosa*--This misdetermination is noteworthy because of the tropical locale).

Schallert, P. O.: USA, Forsyth County, Nifong Rock: "3/15-1936": Beech: VT7885, (Herb, P. O. Schallert); LAM
201572: **Scorias spongiosa.**

Shear, C. L.: USA, Florida, Gainesville: 21 II 1920: BPI, (FLAS46426); LAM201998. URM5144, (BPI); LAM201445: **Scorias spongiosa.** --USA, Maryland, Tacoma Park: 2 I 1903: **Alnus:** BPI; LAM201457. --USA, Virginia Fairfax: 4 X 1935: **Betula:** BPI; LAM201437.

Sherwood, M. A.: USA, New York, Tompkins County, Cornell University campus, near Beebe Lake: 21 I 1977: **Alnus:** CUP55854; LAM201034: **Scorias spongiosa.**

Smith, Erwin F.: USA, Maryland, Caroline County: 23 I 1891: **Alnus:** BPI1590; LAM201456: **Scorias spongiosa.**

Van Denburg, M. W.: USA, Mt. Vernon: **Liriodendron tulipifera:** NYS; LAM201577: **Scorias spongiosa.**

Von Schweinitz, L. D.: USA, North Carolina, Salem, Bethlehem: P, (Herb. L. D. von Schweinitz), (Syn. Fungi 3077-1); LAM201440: **Scorias spongiosa.** --**Fagus betle:** BPI; LAM200673, LAM201441. UPS; LAM200673: **Scorias spongiosa.**

West, Erdman #3548: USA, Florida, Fairbanks: 2 II 1927: **Alder:** FLAS1864; LAM201448: **Scorias spongiosa.** --#9949: USA, Florida, St. Johns County, Pellicier Creek: "2.10, 1935": **Black Alder:** FLAS1862; LAM201449: **Scorias spongiosa.** -- USA, Florida, Clay County, Penny Farms: 31 I 1939: **Alnus rugosa:** FLAS21140; LAM201450: **Scorias spongiosa.** --#11595 and Lillian Audd: USA, Florida, Gainesville, Newmans Lake: 15 I 1937: **Alnus:** FLAS21183; LAM201447: **Scorias spongiosa.** --and Lee O. Overholts: USA, Pennsylvania, Seven Mountains, Greenlee Mountain: 17 III 1918: **Black Alder:** FLAS1863, (The Pennsylvania State College Department of Botany 54); LAM201451: **Scorias spongiosa.**

Wilson, Donald: USA, Massachusetts, West Acton: 15 I 1956: Pinus strobus: MASS; LAM201597: Scorias spongiosa.

Wolf: USA, Illinois, Canton: ILL6623; LAM200619: Scorias spongiosa.

DISCUSSION

I (Reynolds, 1978a) used collections of sequentially produced ascocarps from a natural habitat to establish that the anamorphosis of Scorias spongiosa underwent several morphological expressions. Several extant generic names could be applied to the range of anamorphic expression I found involving a single anamorphic centrum. A similar range of pycnidial forms I reported for S. spongiosa could be individually found in various collections of Scorias utilized in this study, along with other non-pycnidial asexual forms. However, the assumptions I made of the holomorphic reproductive states of S. spongiosa are not transferable to other species in the genus for several reasons. I did not report confirmation of the observations on field-derived specimens with data derived from pure culture isolates. More importantly, the collections utilized were randomly obtained by various collectors over a period of time from many localities. Consequently, positive proof of a biological connection between any teleomorphism with any anamorphoses was impossible to ascertain. In my experience, these same pycnidial (and non-ycnidial) forms are also to be found in many other sooty mold Ascomycete collections where the Scorias teleomorphism is unknown.

NOMEN HOLOMORPHOSIS SPECIES:

TELEOMORPHOSIS. Ascospores hyaline, fusiform, 12-17 μm x 3-6 μm, with three transsepta; Ascus bitunicate, ob-clavate, 30 μm in length; Ascus Wall Kohn-Korf (IKI-KOH) reaction positive, nasse apicale present at apex of inner
layer; hymenium basal in locule; Locule Wall internally appendaged with periphysoids which are branched, septate, hyaline and present or absent at ascocarp maturity; Locule Wall externally appearing as textura angularis, externally appendaged with subtending stalk which forms a cylindrical column measuring 100-150 μm x 30-60 μm; Ascocarp ostio-late, containing a single locule, 60-80 μm x 60-80 μm.

ANAMORPHOSIS: Incertus.

NOMINA SYNONYMA SPECIES:

=Paracapnodium brasiliense (Puttemans) Spiegazzini 1918. Physis 4:228. Pro parte, teleomorphosis only.

EXCLUDED SPECIES

This species is a Trichomerium as circumscribed from Capnodium capsuliferum Rehm (1907); the Rehm concept was based on discordant elements.

SPECIMENS EXAMINED

Fraser, L. R.: Australia, New South Wales, Bulga: 19 I 1934: Lyonia straminea: IMI26119; LAM200979. DAR; LAM 200778: Scorias philippensis.

NOMEN HOLOMORPHOSIS SPECIES:

TELEOMORPHOSIS: Ascospores hyaline, cylindrical, tapering at one end, 19-28 μm x 3-6 μm with 3 transsepta; Ascus bitunicate, cylindrical to clavate, 40-50 μm in length; Ascus Wall Kohn-Korf (IKI-KOH) reaction positive,
nasse apicale present at apex of inner wall; hymenium basal in locule, surrounded by wall comprised of textura angularis; Locule Wall internally appendaged with periphysoids which are branched, septate, hyaline, present or absent at ascocarp maturity; Locule Wall externally appendaged with subtending stalk, forming cylindrical column measuring 62-100 μm x 62-118 μm; Ascocarp containing a single locule, ostiolate, 75-108 μm x 50-118 μm.

ANAMORPHOSIS: Incertus.

NOMEN SYNONYM SPECIES:

SPECIMENS EXAMINED

Hanser, J. S.: Cuba, Santrope de Las Vegas: X 1907: Psidium guajava; URM5263, (BPI); LAM200936: Hyalocapnias psidii+.

DISCUSSION

The larger ascospore size distinguishes this species from others in the genus Scorias. The tropical species published by Batista and Ciferri (1963) as Hyalocapnias psidii belongs here. The Australian record of Scorias philippinensis established by Fraser (1935) is updated as S. brasiliensis. I cannot yet locate holotypic material of S. philippinensis. The Philippine Bureau of Science duplicates were routinely distributed to many herbaria and the likelihood of the existence of an isotype is good; none exists in any herbarium in the Philippines. Additional field work should yield more definitive material. I can locate only two collections which fit within the accepted species concept. Consequently I intend the designation of lectotypes to only temporarily surplant the holotype and deliberately designate two collections in order to emphasize this attitude. One collection does not have precedence over the other as a syntype because of the order in which they are listed. However, I did use the Hanser and the Rands collections to determine the presence of periphysoids and for the Kohn-Korf reaction.
SCORIAS SPECIES IMPERFECTLY KNOWN:

Capnodium tanakae Shirai and Hara 1916. in Hara, K. A discourse on fruit diseases. p. 239. This species was described as having cylindric and simple to branched ascocarps with fuscous three septate ascospores. Sawada (1929) and Yamamoto (1954b) redescribed this species based on Taiwan material instead of the Japanese type. The holotype in TNS is badly damaged. The original description and Tanaka's (1920) English translation of the description suggests a Scorias species closely related to the other temperate species, S. spongiosa.

Neocapnodium theae (Hara) Hara 1959. in Yamamoto, W., Sci. Reports Hyogo Univ. Agri., Agri. Biol. Ser. 4:20. The basionym of this species (Hara, 1931) is Capnodium theae Hara; a later synonym is Capnodaria theae Hara (Hara, 1931). Yamamoto (1959b) considered the species to be related to those in Neocapnodium, differing in the elongated ascospores. This name is not associated with Capnodium theae Boedijn (1931).

Scorias citrina (Hara) Yamamoto 1959. Sci. Reports Hyogo Univ. Agri., Agri. Biol. Ser. 4:20. Antennella citrina Hara (1931) is the basionym of this combination. No holotype could be found in the Hara herbarium now located in TNS. Yamamoto (1959b) cited no new collections. The Hara (1931) description of the species is an insufficient basis for reassessment.

ACKNOWLEDGMENTS

I thank the curators in herbaria TNU and TNS for accommodations during my visit to Taiwan and Japan. I appreciate the criticism of the paper by J. Leland Crane. This work was supported in part by the Los Angeles County Natural History Museum Foundation and the National Science Foundation.

BIBLIOGRAPHY

The bibliography includes complete citations for discussion as well as for nomenclature citation. The Japanese citation is incomplete in some instances in that the excerpts or copies of material seen were without complete bibliographical information.

STUDIES ON THE LEPIOTACEAE OF THE PACIFIC COAST REGION.
I. TWO NEW SPECIES

HELEN V. SMITH

Matthaei Botanical Gardens and
The University Herbarium, University of Michigan
Ann Arbor, Michigan 48109

and

WALTER J. SUNDBERG

Department of Botany, Southern Illinois University,
Carbondale, Illinois 62901

SUMMARY

A brief survey of pertinent literature
on the species of Lepiota sensu lato encoun-
tered on the western slope of the Pacific
Coast States is presented, and two new spe-
cies--Lepiota glabridisca and Lepiota
oregonensis--are described.

The first report on the Lepiotaceae of the Pacific
Coast region was that of Harkness and Moore (1880) who
listed five Lepiota species as Agaricus. Murrill (1912)
recorded 21 species, 15 of which were described as new; one
has since been transferred to Cystoderma (Smith and Singer,
1944). Zeller later (1922, 1929, 1933, 1934, 1938) report-
ed six new species and several new records from Oregon.
Additional distribution records and another four new taxa
were recorded by Kauffman (1924, 1929), Smith and Rea
(1944), Burlingham (1945), and Smith (1949). The only re-
cently published works on Lepiotaceae of the Pacific Coast

Because of the paucity and scattered nature of avail-
able information, these studies were initiated to more
fully document all the species of *Leptota sensu lato* known to occur on the western slope of the Pacific Coast States. In this paper, two new species are described. Colors in quotation marks are from Ridgway (1912). Where employed, herbarium abbreviations are from Holmgren and Keuken (1974).

LEPTOTA GLABRIDISCA Sundberg, sp. nov. Figs. 2, 3

Pileus 1.5-4.2 cm latus, convexus demum plano-
convexus, perumque umbonatus, udes demum siccus, demum
rimosus, glaber, obscure rufo-brunneus vel vinaceo-
brunneus, ad marginem pallide cinnamoneus; sapor amarus.
Lamellae liberae, albae. Stipes 3-8.5 cm longus, 2-5 mm
crassus, albus, glaber; annulus subapicalis, albus, ad
marginem brunneus. Sporae (6.3-)7.0-9.5(-10.3) x 4-4.8
(-5.5) µm, subellipsoideae. Cheilocystidia (21-)27-45(-54)
x 6-10 µm, clavata vel ventricosa. Holotypus in Herbario
San Francisco State University conservatum est: legit
prope Patrick's Point State Park, Humboldt Co., California,
Sundberg 888, Oct. 9, 1966.

PILEUS 1.5-4.2 cm broad, initially convex, becoming
plano-convex to plane, then uplifted, usually umbonate;
margin slightly incurved at first, then decurved, becoming
plane, entire at first, rimose to eroded in age, striate
where not covered by the cuticle; surface dry to moist,
rarely subviscid; cuticle initially continuous and glabrous
throughout, remaining so on the disc, becoming radially
diffracted and exposing the white flesh toward the margin,
infrequently appearing appressed scaly due to partial dis-
ruption of the radially arranged cuticular strips, often
receding from the margin; disc rarely appearing hygrophan-
ous, dark reddish brown ("vandyke brown" to "warm sepia")
to dark vinaceous brown ("natal brown") to reddish brown
("rood's brown") to orange-brown ("mikado brown"), paler
("army brown" to "avellaneous" or "cinnamon" to near "pink-
ish buff") toward the margin.

FLESH 1-3 mm thick, compact but soft, white, unchang-
ing. Taste bitter. Odor not distinctive.

LAMELLAE free, approximate to remote, some forking or
anastomosing or both near the stipe apex; white to pale
cream ("cartridge buff"), unchanging; close; thin; margin
minutely fimbriate, concolorous. Lamellulae in one to two
tiers, sometimes anastomosing with the lamellae.

STIPE 3.0-8.5 cm long, 2-5 mm wide at the apex,
enlarged below to distinctly clavate; surface dry, glabrous throughout; white, sometimes slightly yellowish near the base, becoming sordid upon handling; stuffed, becoming hollow, pith fibrils white, cortex white to slightly darker, both unchanged.

ANNULUS superior, sometimes appearing movable, sheathing below and flaring to appressed against the stipe above, membranous, thin and fragile, white above and below with a dark reddish brown to cinnamon lower margin.

BASIDIOSPORES white in mass; (6.3-)7.0-9.5(-10.3) x 3.9-4.8(-5.5) μm, ovoid to ellipsoidal, often tapered toward the apex and with a convex apical protrusion, inequilateral in lateral view, smooth; thick-walled as seen in cresyl blue, more so at the apex, apical pore lacking, the apical region appearing paler and somewhat differentiated in Melzer's reagent; uni- to biguttulate, rarely granulose; hyaline to pale yellowish green in KOH, dextrinoid (pale to dark reddish brown) in Melzer's reagent. **BASIDIA** 20-31 (-36) x 6-10 μm, clavate, mostly 4-spored, rarely 1- to 2-spored, finely granulose, hyaline in KOH and Melzer's reagent. **CHEILOCYSTIDIA** (21-)27-45(-54) x 6-10 μm; abundant; clavate to ventricose, often rostrate, apices rounded to subacute, bases frequently narrow and elongate; thin-walled and sometimes flexuous, rarely appearing faintly encrusted toward the midregion, hyaline in KOH and Melzer's reagent. **PLEUROCYSTIDIA** absent. **LAMELLAR TRAMA** loosely interwoven, some hyphae with a granular incrustation on the walls, hyaline in KOH and Melzer's reagent, oleiferous hyphae present. **PILEAL TRAMA** loosely interwoven, more compact and radially arranged toward the cuticle, hyaline in KOH, hyaline to pinkish or tinged pale orange in Melzer's reagent, oleiferous hyphae present. **CUTICLE** appearing two layered on the disc; the upper layer irregularly and sometimes loosely interwoven, frequently appearing gelatinous, thinner and often scattered in patches or absent toward the margin, cells somewhat thinner than those of the lower region, walls thin, not encrusted, some with a pale yellowish brown content, hyaline to pale yellowish brown in KOH and Melzer's reagent; the lower layer more or less radially interwoven, cells elongate, wider than those of the superficial region, often anastomosing, walls frequently encrusted, pale to dark yellowish brown in mass in KOH and concor- orous to dark brown or pale to dark reddish brown in Melzer's reagent. **CLAMP CONNECTIONS** absent.

HABIT AND HABITAT: Solitary to scattered to gregarious in humus under *Picea sitchensis* (Bong.) Carr, *Sequoia sempervirens* Endl., and *Tsuga heterophylla* (Raf.) Sarg.
September to November in northwestern California, western Oregon, and Idaho.

COLLECTIONS EXAMINED: California: Madden 764; Sundberg 434, 452, 768, 786, 787, 888 (HOLOTYPE), 1005; Thiers 14245 (all SFSU). Oregon: H. V. Smith 124, 128a, 165 (all MICH). Idaho: H. V. Smith 8-25-66 (MICH).

DISCUSSION: The smaller size, more fragile nature, dark reddish brown to vinaceous brown tinges, and interwoven cuticle differentiate \textit{C. glabridisca} from \textit{C. rubrotincta} Peck. \textit{Leptota Glatfelteri} Peck and \textit{L. felinoides} Peck are also similar but lack the two layered cuticle with the irregular and often gelatinous-appearing upper layer.

\textbf{LEPTOTA OREGONENSIS} H. V. Smith, sp. nov. Fig. 1

Pileus 8-25 mm latus, convexus demum obtuse campanulatus vel plano-expansus, ad marginem appendiculatus, siccus, granulosus demum subsquamulosus, aurantio-cinnamomeus; sapor farinaceus. Lamellae liberae, approximatae, latae, confertae, aurantio maculatae. Stipes 1.5-9 cm longus, 1.5-3 mm crassus, granulosus, aurantio-cinnamomeus, ad basim albidos. Sporae 4-4.8 x 2-2.4 \(\mu\)m, ellipsoideae. Cheilocystidia 24-42 x 6-10 \(\mu\)m, fusoide-ventricosa, obtusa vel capitata. Cellulæ cuticulæ 12-44 \(\mu\)m diam, tenuitunicatae. Fibulae defunt. Holotypus in Herbario Univ. Mich. conservatum est: legit prope Otis, Lincoln Co., Oregon, H. V. Smith 156, Oct. 10, 1970.

PILEUS 0.8-2.5 cm broad, buttons rounded, nearly globose at first, expanding to obtuse or more or less campanulate and finally nearly plane with a distinct umbo; the margin incurved and somewhat appendiculate from the fibrillose veil at first, becoming uplifted and with a few rather wide radial splits; surface granulose or granulose-warty, the warts or granules larger and more numerous over the disc, becoming finer toward the margin and at times merely slightly granulose at the margin; disc tawny-brown to orange-cinnamon ("mikado brown", "tawny", "russet", "ochraceous-tawny", "orange-cinnamon"), progressively paler--pinkish buff to cinnamon-buff to pale yellowish white to white--toward the margin, in age becoming pale brown over all; warts darkest at the apex.

FLESH thin, white, unchanging or at times becoming
pale orange to burnt orange after handling, firm, somewhat watery-sordid in age. Odor fungoid. Taste mildly farinaceous.

LAMELLAE free, approximate at first but becoming more distant from stipe, somewhat ventricose when mature; dull white to pale cream color, becoming watery-sordid in age, in places stained brownish cinnamon or with distinct rusty spots; margins even, concolorous or tinted with pale orange after handling. Lamellulae few.

STIPE 1.5-9 cm long, 1.5-3 mm thick at apex, equal to the base where it may enlarge to 4-5 mm, covered by a gran-
ulose or somewhat warty layer nearly to the apex; apex silky and whitish, below "pinkish cinnamon" to "cinnamon" or somewhat ochraceous-tawny, bruised areas more or less "orange-cinnamon"; thinly hollow with a white fibrillosive pith in places, cortex tinted with colors of surface, somewhat watery, "orange-cinnamon" where bruised; in older basidiocarps watery brownish, usually whitish around the base where it is attached to the soil.

BASIDIOSPORES 4-4.8 x 2-2.4 µm, ellipsoid, hyaline to very pale rusty brown in Melzer's reagent, thin-walled. CHEILOCYSTIDIA 24-42 x 6-10 µm, inflated-clavate with a rounded apex, capitate or having 1-4 narrowed constrictions giving rise to a somewhat short moniliform tip with the segments smaller toward the apex, thin walled. PLEUROCYSTIDIA absent. CUTICLE a layer of thin-walled spherical cells 12-44 µm in diameter. CLAMP CONNECTIONS not seen.

HABIT AND HABITAT: Gregarious to caespitose in soil and litter under Alnus sp., Pseudotsuga meziessii (Mirb.) Franco and Tsuga heterophylla. September and October in western Oregon.

COLLECTIONS EXAMINED: Oregon: H. V. Smith 140a, 140b, 156 (HOLOTYPE), 157, 164; A. H. Smith 23426, 24267; Ammirati 5735, 5736, 5761 (all MICH).

DISCUSSION: Sections of dried material prepared for anatomical study produce a pale rusty exudate in KOH. Sectioned material is pale yellowish in KOH with some pale rusty spots on the lamellar margins and in the cutis.

Smith has collected this species over a number of years but has found it abundantly only during one year at the Cascade Head Experimental Forest, near Otis, Oregon.

Lepiota oregonensis differs from L. rufescens Lange in its much more orange-tawny colors and its lack of pleurocystidia. Lepiota fumosifolia Murrill is also similar but has somewhat larger spores and lacks cheilocystidia.

ACKNOWLEDGEMENTS

The senior author expresses appreciation to Dr. Erich E. Steiner, Director of the University of Michigan Matthaei Botanical Gardens for providing laboratory space to carry out her studies. Photographs of the Smith and Sundberg collections are used through courtesy of the University of Michigan and San Francisco State University Herbaria respectively.
LITERATURE CITED

NOTES ON COLLYBIA. I.

COLLYBIA ALKALIVIRENS

ROY E. HALLING

Department of Botany
University of Massachusetts
Amherst, MA 01003, U.S.A.

In the course of preparing a monograph of New England species of Collybia, I have encountered an unusual species that Singer (1948) named Collybia alkalivirens. His description is based on holotype material collected in Virginia and a paratype collection from Massachusetts. Examination of these two collections has shown that this agaric has some very distinct characteristics. First of all, in sections of the basidiocarp that are revived and mounted in water, the hyphae of the pileipellis, pileus trama, lamellar trama, and stipitipellis are conspicuously encrusted with a dark brown pigment. Secondly, if an alkaline solution is applied to the sections, the tissues become an intense green color. The reaction of fresh material to alkaline solutions is not known for all the collections studied. However, the field notes on one collection (Gilliam 511, MICH) do indicate that a green reaction occurs when KOH is applied to the fresh pileus and lamellae. Thirdly, the basidiocarps are darkly pigmented when fresh and become dark brown to black when dried.

The examination of additional collections indicates that C. alkalivirens is more widely distributed than previously believed and that it also occurs on a greater variety of substrates. C. alkalivirens has not been described subsequent to the original publication nor has it been included in any recent discussion or listing of agarics except in Singer (1975). The following description of macroscopic characters of fresh material is adapted from field notes compiled by Dr. H. E. Bigelow. All collections cited are deposited in the Mycological Herbarium of the University of Massachusetts (MASS) except where otherwise
indicated. Capitalized color terms are taken from Ridgway (1912). The terminology used for cortical layers is from Bas (1969) and Singer (1975).

COLLYBIA ALKALIVIRENS Singer, Sydowia 2: 26. 1948.

Fig. 1 & 2

Pileus 8–27 mm broad, convex or hemispheric with the margin incurved or inrolled at first, expanding to broadly convex or obtusely conic or plane, finally plane with a low broad umbo; margin obscurely rugose-striate or nearly sulcate; surface dull, glabrous, hygrophanous, dark vinaceous-brown when moist (near Carob Brown), fading to rufous on the disc, usually the margin becoming cinnamon to buff with a rufous cast, sometimes only the disc fading, dark brown to black or sometimes buff when dried; flesh thin, very thin at edge of pileus, whitish with a rufous flush; odor and taste none.

Lamellae narrowly adnate to nearly free, close, narrow (0.5-2 mm), equal, soft-textured, more or less glaucous, separable from the pileus, not forked, sometimes intervenose, brown (near Auburn to Bay), fading to chocolate brown, blackish when dry; edges even, straight or slightly undulate.

Stipe 3-6.5 cm long, 1-3 mm thick, equal, fibrous-cartilaginous, straight or curved, centrally attached; surface dull, glabrous except for brownish tomentum at base, dark vinaceous-brown (near Carob Brown) to blackish (near Bone Brown to Clove Brown) and paler at the apex; interior hollow.

Spores white in deposit, 5.4-6.5(8.6) X 2.2-3.2(5.4) μm, slightly wrinkled in water mounts of herbarium material, smooth and pale greenish in alkali, inamyloid, acyanophilous, pip-shaped to narrowly ellipsoid and inequilateral in profile, ellipsoid to subcylindric in face or back view. Basidia 18.4-27.0 X 5.4-6.5 μm, clavate to subclavate, four sterigmate, greenish in alkali; siderophilous granules absent. Pleurocystidia absent. Cheilocystidia scattered, inconspicuous, filamentous to clavate with occasionally a few broad obtuse projections, 19.5-72.5 μm long, green in alkali. Lamellar trama of subparallel to slightly inter-
woven hyphae; cells 4.3-9.7 μm in diam, occasionally inflated to 16.2 μm, with conspicuous spots of dark brown granular encrusting pigment present in water mounts; pigment mostly dissolving in alkali and discoloring the tissues to greenish. Pileus trama loosely interwoven; hyphae branched, 4.3-8.6 μm in diam, slightly encrusted with brown pigment which dissolves in alkali. Pileipellis a layer of repent, branched hyphae, not diverticulate or coralloid, not radially arranged (i.e., a cutis of the "dryophila type"); hyphae 3.2-5.4 μm in diam, coarsely encrusted with a brown plate-like pigment which partially dissolves and becomes dark green in alkali solutions. Stipitipellis a layer of parallel, vertically oriented hyphae; cells 3.2-5.4 μm in diam, encrusted, giving rise to long, filamentous to contorted caulocystidia, green in alkali. Clamp connections present in all tissues.
Habit, habitat, and distribution: Solitary, scattered, gregarious, or cespitose on soil, among moss, decaying wood debris, or old fern hummocks. Occurring in hardwood forests during June and July in New England, Quebec, Michigan, New York, and Virginia. Also known from conifer forests in Idaho and Oregon during October and December.

Material Examined: CANADA - QUEBEC: Bigelow 5048.
MAINE: Piscataquis Co. - Bigelow 10133, 10192, 10231.
OREGON: Clackamas Co. - Smith 24736 (MICH).
VERMONT: Lamoille Co. - Bigelow 12556, 12564, 12864.
VIRGINIA: Giles Co. - Singer 337, HOLOTYPE (FH).

Discussion: The affinities of C. alkalivirens appear to be with members of Section Levipedes (e.g., Collybia fuscopurpurea and Collybia dryophila), but it is distinct from them because C. fuscopurpurea has encrusting pigments which are insoluble in alkali and C. dryophila has pigments that are apparently intracellular. Collybia alkalivirens is the taxon that Kaufman (1918) called "Collybia plexipes Fr. var.", and his two collections cited above were so determined by him. However, according to Kühner and Romagnesi (1953), C. plexipes is a Lyophyllum with ornamented spores, and Moser (1978) equates C. plexipes sensu Kühner and Romagnesi with Tephrocybe tylicolor (Fr.) Moser. Collybia alkalivirens, of course, lacks siderophilous granules in the basidia and has smooth spores. Lange and Sivertsen (1966) discuss the nomenclature of some rough-spored Lyophyllum species, but do not provide a disposition for the Friesian C. plexipes.

The two collections from the western United States (Cooke 19024 and Smith 24736) possess spores which are larger (6.5-8.6 X 3.2-5.4 μm) than is typical for material from the eastern United States, but whether or not this is...
significant cannot be determined until more western collections are studied.

Finally it is clear that *C. alkalivirens* is a distinct element in the mycoflora of New England and adjacent areas and is widely distributed. Although the affinities of this taxon are with Section *Levipedes* as currently outlined by Singer (1975), *C. alkalivirens* is somewhat of an anomaly in this section.

ACKNOWLEDGEMENTS

I would like to thank Dr. D. H. Pfister for the loan of type specimens from the Farlow Herbarium, and I also thank Dr. R. L. Shaffer, Director of the Herbarium at the University of Michigan, for the loan of collections and for reviewing the manuscript. In addition, I wish to thank Dr. E. G. Simmons for his advice on Latin and nomenclature, and finally I express my gratitude to Dr. H. E. Bigelow for the use of his notes and his guidance and advice.

LITERATURE CITED

RECOLTE DE CORDYCEPS INTERMEDIA DANS LES PYRENEES ATLANTIQUES, ESPECHE NOUVELLE POUR L'EUROPE

FRANCOISE CANDOUSSAU
22 rue Hôo-Paris, 64000 Pau, France

SUMMARY
A collection of Cordyceps intermedia Imai (= C. valliformis Mains) was made on August 22, 1978 in the woods near the St. Blaise Hospital, Pyrénées Atlantiques. Known till now only from Japan and eastern North America, it is redescribed here from the French collection.

RÉSUMÉ

CARACTÈRES MACROSCOPIQUES
Stroma solitaire avec un long stipe, distinctement capitée, globuleux, 5 mm de diamètre, de couleur brun clair, ostioles proéminentes. Stipe 7,5 cm de long x 0,2 cm de large, noir brillant, de consistance cornée (FIG. 1) légèrement furfuracé-sillonné et brun clair dans sa partie supérieure (FIG. 2).

CARAC TÈRES MICROSCOPIQUES
Couche superficielle du stroma nettement différenciée (FIG. 3-C), composée d'hyphes parallèles, septées, de 25-40 μm de long et 5-7 μm de large, à parois légèrement épaissies se terminant par des cellules arrondies, n'allant pas s'élargissant.

Sous le cortex, chair de textura epidermoidea à textura angularis, composée de cellules de 7 à 10 μm.

Périthecès allongés jusqu'à 1000 x 300 μm de large.

Ostioles proéminentes mais non différenciées des cellules de la surface du stroma.

Stipe composé d'hyphes parallèles de 3,5-5 μm de diamètre (FIG. 3-D). Les hyphes de l'extérieur du stipe se différencient seulement de celles de l'intérieur par leur couleur.

1 A cooperating scientist of the Plant Pathology Herbarium, Cornell University, Ithaca, NY 14853.
FIG. 1, 2. Cordyceps intermedia (Herbier F. Candoussau 4789-2). 1: Carpophage × 2 (photo Guy Roux). 2: à gauche, détail du stroma laissant voir les périthèces saillants ainsi que le haut du stipe sillonné; à droite, en coupe, grandeur des périthèces et de l'intérieur du stipe × 4.25 (photo Emile Jarias).
FIG. 3: détails microscopiques. a, haut d'un asque avec spores; b, 3 fragments sporaux; c, couche superficielle et différenciée du stroma; d, hyphes de l'intérieur et de l'extérieur du stipe. (F.C. 4789-2).

brune, leurs mensurations sont identiques.
Asques étroitement cylindriques 250-350 × 6-7 μm à sommet épaisi (FIG. 3-A).
Spores aussi longues que les asques, filiformes, multi-septées. Fragments sporaux unicellulaires, fusiformes de (7-) 8 (7) μm (FIG. 3-B).

HABITAT inconnu.
SPECIMEN EXAMINÉ

REMARQUE
A la fois C. intermedia Imai et C. valliformis Mains sont décrit sur Elaphomyces, il ne nous a pas été malheureusement possible de retrouver l'hôte de la récolte française.

Notre récolte s'identifie bien à Cordyceps intermedia d'après les descriptions de Kobayasi et Shimizu (1960) et Mains (1941, sous le nom de C. valliformis) synonymisé par Kobayasi et Shimizu.

DISCUSSION
Notre récolte se différencie de la récolte japonaise par
son stroma plus petit: 5 mm au lieu de 6-12 mm de diamètre; le haut du stipe furfuracé sillonné et non squamuleux; les périthèces proéminents, leur hauteur de 1000 µm au lieu de 450-540 µm; la forme de ses fragments sporaux fusoïdes et non cylindriques tronqués; leur mensurations plus grandes: 8,5 µm de moyenne au lieu de 4,5 µm.

Notre récolte est plus proche de la récolte de Mains (1957) décrite Cordyceps valliformis par la mensuration du stroma: 3-12 mm de diamètre; la hauteur des périthèces 500-700 µm; le haut du stipe furfuracé; la dimension des fragments sporaux 3-8 x 2 µm. Reste en désaccord la forme des spores fusoïdes, Mains ne les décrit pas clairement et les périthèces proéminents sur notre récolte.

Malgré ces petites différences nous pensons cependant qu'il s'agit bien de Cordyceps intermedia Imai.

Ce Cordyceps se situe dans le groupe Valliformes minutaee entre C. tenuispora Mains, espèce à petites spores comme C. intermedia (6-8 x 1-1,5 µm) mais à stroma clavulé et C. rouxii Cand. groupe Valliformes mediae à stroma capité mais dont les spores sont supérieures: 16 x 2,5-3 µm et qui macroscopiquement est une espèce moins élancée et à stroma brun noir.

Nous remercions Gary Samuels pour ses suggestions.

BIBLIOGRAPHIE

CLATHRUS RUBER IN CALIFORNIA
AND WORLDWIDE DISTRIBUTIONAL RECORDS

WILLIAM R. BURK

University of North Carolina, Botany Library
Chapel Hill, NC 27514 U.S.A.

Clathrus ruber Micheli ex Persoon (Clathraceae, Phallales, Gasteromycetces) has a red receptacle consisting of a spongy network with meshes unequal in size. The dark, foul-smelling gleba covers the inner surface of the receptacle and the basal portion of the receptacle is surrounded by a white volva with a central mycelial cord. The smooth, elongated spores measure 5-6 x 1.7-2 μm. Dennis (1954) stated that this species is distinguished from the closely related tropical species, Clathrus crispus Turpin, by the absence of corrugated rims which surround each mesh of the sporocarp. The species is well illustrated in the older literature as indicated by Saccardo and Traverso (1910).

American mycologists usually refer to this species as C. cancellatus Linnaeus, which is most likely based on the American Code of Botanical Nomenclature in which the starting point date was Linnaeus, Species plantarum, 1753. According to the International Code of Botanical Nomenclature the starting point date for the nomenclature of the Gasteromycetes is 31.XII.1801, the arbitrary publication date for Persoon, Synopsis methodica fungorum, 1801. Therefore, the correct specific epithet for this fungus is Clathrus ruber Micheli ex Persoon and the following are synonyms according to the literature:

Clathrus ruber Micheli ex Persoon, Synopsis methodica fungorum, 2: 241, 1801.

≡ [Clathrus ruber Mich. Nova plantarum genera, p. 214, tab. 93, 1729.]
Clathrus cancellatus L. ex Fr. a. ruber (Mich. ex Pers.) Fr. Systema mycologicum, 2: 288, 1823.

= Clathrus nicaeensis Barla. Les champignons de la province de Nice, p. 108, pl. 45, fig. 5-12, 1859.

Persoon (1801) and Fries (1823, v. 2) provide additional pre-starting point synonyms.

The literature provides no mention of California as a distributional station for this species, but there have been four different California collections in the San Francisco Bay region. Sporocarps (NY) were found in Palo Alto, on soil in a slightly shaded garden on July 4, 1952 and again on July 6, 1952. Specimens (UC #143,727) were reported by Mrs. Ted Bowers of Oakland, in October 4, 1959, but no additional data on the collection are available. On several occasions in 1976 Harry Thiers (personal communication) reported finding the lattice stinkhorn in some of the flower beds or cultivated areas in the arboretum in Golden Gate Park, San Francisco. The specimen (Fig. 1) (SFU-HDT #36,481) examined was found under Escallonia sp. In the fall of 1977, James Armstrong (personal communication) found the fungus in sandy soil under Veronica sp. south of Golden Gate Park. No voucher specimen exists for this find, but a photo of it is deposited in (NY).

Clathrus ruber had been previously reported from five states in the United States. Schweinitz (1822) reported it from Georgia. In June 1966, Kozelnicky and Moncrief (1966) found the stinkhorn in Virginia and North Carolina in golf turf. Peck ("1879" [1880]) reported the species from Buffalo, New York. His distributional record is questionable and the species reported may be C. columnatus Bosc according to Lloyd (1903). Murrill (1951) indicated the presence of the fungus in Florida. Gillis (1972) reported that this phalloid was found in the Miami,

Fig. 1. Clathrus ruber. ca x 1.75.
Florida, area and was frequently spotted at the Kampong in Coconut Grove, Florida.

Lloyd (1909) stated that *C. ruber* is a native of southern Europe and had been found in Italy, southern France and rarely in the channel coast of France, England and into Holland. Northern Africa was also cited by Lloyd as a distributional station. He (1906) also included Switzerland and the islands of the Mediterranean as distributional stations. Dennis (1955) provided a complete record of distribution for England and a distributional map for western Europe. Coker and Couch (1928) listed Jamaica, the Bahamas and Puerto Rico as places from which specimens had been examined. Fischer (1888) cited additional locations of Santo Domingo, Sri Lanka (cited as Ceylon), Khasia, Greece, Hindustan (cited as Hindostan) and New Zealand. In Africa Bottomley (1948) mentioned the fungus from Lake Nyassa and Hendrickx (1948) cited collections from Lukolela and Ipamu, Zaire. The tropical distributions cited by Coker and Couch, Fischer, Bottomley and Hendrickx are dubious since *C. ruber* is not a tropical species. Eckblad (1975) cited the Canary Islands. Dennis (1977) cited the Azores and he (personal communication) indicated records from Luxemburg, Lithuania and a questionable one from Greece. This phalloid had also been cited for the following countries: Canada (Lowe 1977), Mexico (Guzmán 1972 & 1975), Ireland (Scannell 1974), Belgium (Dennis 1955), Portugal (Almeida 1972), Spain (Calonge 1975), West Germany (Koch 1975), East Germany (Thiel and Breitkopf 1976), Czechoslovakia, Yugoslavia and Poland (Pilát 1958), Romania (Eliade 1965), U.S.S.R. (Sosin 1973), Iran (Ershad 1977) and Japan (Kobayasi 1938).

Porcher (1854) graphically provided the following account of a poisoning by this species: "A young person having eaten a bit of it, after six hours suffered from a painful tension of the lower stomach, and violent convulsions. He lost the use of speech, and fell into a state of stupor, which lasted for forty-eight hours. After taking an emetic he threw up a fragment of the mushroom, with two worms, and mucus, tinged with blood. Milk, oil, and emollient fomentations, were then employed with success."

I am grateful for the loan of specimens from the New York Botanical Garden's Cryptogamic Herbarium and the
University Herbarium of the University of California-Berkeley through the aegis of the Santa Barbara Botanic Garden. I thank Larry Stickney and James Armstrong for distributional data. Special gratitude is extended to Dr. Clark T. Rogerson for supplying information on older references; to Dr. Richard P. Korf and Dr. R.W.G. Dennis for reviewing and revising the paper; and to Dr. Harry D. Thiers for his suggestions in revising this paper, for distributional information and for the color photo.

Literature Cited

Ershad, D. 1977. Fungi of Iran. (Dept. of Botany, Publication, no. 10) Ministry of Agriculture and Natural Resources, Agricultural and Natural Resources Research
Organization, Plant Pests and Diseases Research Institute, Tehran, 277 p.

_. 1909. Synopsis of the known phalloids. [Published by the author], Cincinnati, Ohio. 96 p.

PISOLITHUS TINCTORIUS, A PAVEMENT BREAKER IN SOUTHERN CALIFORNIA

WILLIAM R. BURK
University of North Carolina, Botany Library
Chapel Hill, NC 27514 U.S.A.

and

GEORGE F. LUPONE
University of California, Library
Santa Barbara, CA 93106 U.S.A.

The distribution in the United States of Pisolithus tinctorius (Pers.) Coker & Couch (Gasteromycetes: Sclerodermatales) was cited by Marx (1977) as occurring in 38 states. In addition occurrence in the District of Columbia was cited by Grand (1976).

From September to December 1978, a large number of fruitings of P. tinctorius occurred throughout the University of California, Santa Barbara campus. Collections are deposited in LG, NY and UCSB herbaria. Pisolithus tinctorius occurred in silty sand alongside bike lanes, paths and sidewalks under Juniperus sp., Eucalyptus globulus Labill., Pinus pinea L. and P. radiata D. Don. The species of tree associates supplement Marx's (1977) list for the United States. McClatchie (1897) stated that Pisolithus tinctorius (cited as Polysaccum crassipes DC) was found only occasionally in soil under Eucalyptus trees in the Southern California coastal region.

An unusual occurrence was observed on October 10, 1978. Under Pinus radiata a large sporocarp had erupted through macadam 4 cm thick of a bike lane creating a hole 10.5 x 19 cm. Stevenson (1936) reported similar pavement breakage...
for the gasteromycetous fungi, *Phallus ravenelii* Berk. & Curt. (cited as *Ithyphallus ravenelii* (Berk. & Curt.) Fisch.) and *Scleroderma geaster* Fr.

The authors extend gratitude to Dr. L. F. Grand for reviewing this paper.

Literature Cited

McClatchie, A. J. 1897. Seedless plants of Southern California, Protophytes-Pteridophytes; a list of the plants below seed-plants known to occur in the coast region of Southern California, with a synopsis of the vegetable kingdom and artificial keys to genera. *Proc. S. California Acad. Sci.* 1: (337)-398.

As part of a continuing study on the endomycorrhizal status of six high-value hardwood species, seedlings of these and various other hardwoods were extracted from seedbed or perimeter areas of the two state tree nurseries in Kentucky. A portion of the soil collected with the seedlings from each of the growing sites was examined for spores of vesicular-arbuscular (VA) fungi by a wet sieving method (Gerdemann and Nicolson, 1963). In addition, young root segments were cut from each seedling and examined for VA mycorrhizae by the Phillips and Hayman (1970) staining procedure, with some modifications. The remaining soil and chopped root segments from each sample were thoroughly mixed and planted to corn (Zea mays L.) in greenhouse flats. After the seed germinated, the plants were supplied with Long Ashton nutrient solution each week for 5 weeks. After 90 days' growth, the corn roots were examined by the above-mentioned staining technique. A new species of Acaulospora was found in a perimeter soil sample from the Kentucky Dam tree nursery. Microscopic slides and photographs that illustrate the stages of development in the type species of this VA mycorrhizal fungus have been deposited in the herbarium at Oregon State University.
Acaulospora bireticulata Rothwell and Trappe sp. nov. (Figs. 1-2)

Sporocarpia ignota. Azygosporae singulae in solo efformatae, sessiles, lateraliter gestae in hypha 10-30 μm diam in vesiculo globoso prope terminata. Sporae globosae, 150-155 μm diam, pallide brunae; reticulo cristis 2 x 1.5-3 μm et stratis tribus formatis; alveolae reticulati 6-18 μm longae, pagina sporae inculae processibus angulatis, obtusis 1 x 1 μm, munitae aspectu reticuli inversi. Sporae tunicae stratis tribus, unumquidque ± 1 μm crassum. HOLOTYPUS Rothwell SP169 (OSC).

Sporocarps unknown. Azygosporae formed singly in soil, sessile, borne laterally on a hyaline, thin-walled hypha tapered from 2.5-7.5 μm diam at its base to 10-30 μm diam near its terminus, globose to subglobose vesicle 127-135 μm diam; spore-bearing hypha with emergent, branched, flagellate hyphae and collapsing by maturity. Spores globose, 150-155 μm diam, subhyaline in youth, becoming light brown by maturity. Spore surface ornamented with a polygonal reticulum, the ridges 2 x 1.5-2 μm with sinuous, dark grayish-green sides and a paler, depressed central stratum; ridges occasionally branched toward the center of polygons or forming irregular, isolated projections at polygon centers. Polygons 6-18 μm long, the enclosed spore surface beset with round-tipped, 4- to 6-sided processes ± 1 x 1 μm to give the appearance of an inverted reticulum. Spore walls of three layers, each ± 1 μm thick, the outer layer dark grayish green to grayish brown, the inner layers hyaline.

DISTRIBUTION AND HABITAT: To date, A. bireticulata is known only from a perimeter soil sample of the Kentucky Dam tree nursery in western Kentucky.

MYCORRHIZAL ASSOCIATIONS: Associated in nature with the roots of Sassafras albidum (Nutt.) Ness, and in greenhouse culture with Zea mays L.

The complex spore ornamentation of A. bireticulata distinguishes it from all other known members of the genus. A. elegans spores often have a single-layered reticulum deposited on top of crowded spines 0.5 μm thick that
ornament the spore surface. The three-layered reticulum and angular processes 1 μm thick on spores of *A. bireticulata* are distinctly different.

LITERATURE CITED

FIG. 1, A-D. Developmental stages in the formation of azygospores in *Acaulospora bireticulata*.

(A) Early stage of vesicle formation (scale bar, 10 μm). (B) Mature vesicle with branched, flagellate hyphae (scale bar, 10 μm). (C) Late stage in transfer of vesicle contents to azygospore (scale bar, 20 μm). Note spore size, which approximates the emptying vesicle. (D) Mature azygospore attached to empty, collapsed vesicle (scale bar, 30 μm).
FIG. 2. Detail of double reticulum on outer wall of azygospores (scale bar, 10 μm).
LEKH R. BATRA

Mycology Laboratory, Plant Protection Institute, Science and Education Administration, U. S. Department of Agriculture, Beltsville, Maryland 20705, U. S. A.

SUMMARY

A fungus indistinguishable from Monilinia fructigena was isolated during an evaluation of accessions of pears for the occurrence of fungi causing brown rots of fruits at Beltsville, Maryland. It has narrow-ellipsoid ascospores with tapered, but not pointed, ends; its conidia are elongate-ellipsoidal and the conidiophores are generally arranged in buff to light yellow-brown sporodochia. In contrast, the ascospores of M. fructicola are ellipsoidal or ovoid and generally have rounded ends; the conidia are limoniform or ellipsoidal; and the sporodochia are light grayish to mouse gray. M. laxa does not morphologically differ appreciably from M. fructicola, except for slower, scanty, and effuse growth on potato dextrose or peach agar media, and lobate intramatrial margin.1/

INTRODUCTION

Monilinia Honey (Discomycetidae: Inoperculatae) includes approximately 30 species and primarily attacks Rosaceae and Ericaceae (4,7,8). Three species, M. fructicola (Wint.) Honey, M. fructigena (Aderh. & Ruhl.)

1/Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the U. S. Department of Agriculture and does not imply its approval to the exclusion of other products that may also be suitable.
Honey, and *M. laxa* (Aderh. & Ruhl.) Honey, are destructive to apples, pears, and stone fruits. They cause brown rots of fruits, blossom wilt and blight, and stem cankers which often follow blossom blight or fruit rots (2,7,13). Apothecia of *Monilinia* arise from a hollow-sphaeroid stroma. Monilioid chains of conidia are produced on all affected parts of the host and the conidiophores in many species, including the ones causing the brown rots of fruits, are usually arranged in sporodochia.

OBSERVATIONS

Since 1973, field-collected mummies of stone fruits, apples and pears have been routinely incubated on a window sill at this laboratory to obtain apothecia of *Monilinia*. During April, 1974, two long-stalked, 1-3 mm wide apothecia developed in one of the five dishes containing 'Kieffer' pears (*Pyrus serotina* Rehder var. *culta* Rehder *X* *P. communis* L. var. *sativa* L.) collected at the "South Farm", USDA, Beltsville, MD. One of the apothecia aborted, but the other matured. Several single-ascomycete cultures were obtained using a technique described earlier (1). At the time of initial plating the isolates did not sporulate on Difco potato dextrose agar or peach agar, but two of the seven single-spore isolates formed stroma characteristic of the family Sclerotiniaceae, which includes *Monilinia*. Although the cultures were buff to light yellow-brown (instead of the usual light gray to mouse gray) they were accessioned and stored at 5°C for 16 months along with over 160 isolates of the North American brown rot fungi *M. fructigena* and *M. laxa*. All seven isolates subsequently formed conidia and microconidia on Difco malt agar.

During the fall of 1975, P. D. Millner of this Laboratory recovered several isolates of a *Monilinia* from conidia-bearing whitish sporodochia on fruits of the same 'Kieffer' pear tree from which the apothecia-bearing mummies originated in the spring of 1974. These isolates resembled the cultures of ascospore origin described above but sporulated on potato dextrose agar and peach agar. The conidia of these fall isolates were characteristic of *M. fructigena*. Additional 'Kieffer' pears infected with this organism could be detected in the field on the basis of whitish to buff sporodochia during October, 1975. *M. fructicola* also attacked various pear cultivars in the orchard at this time and could be readily recognized because of its grayish sporodochia. Six 'Kieffer' trees
were tagged for presumed cankers and for detection of *M. fructigena* during the following spring. However, the pathogen was not recovered from any of the 25 presumed cankers or from blossoms.

All Beltsville isolates designated as *M. fructigena*, including those from apothecia, were compared with 38 single conidial representative isolates of *M. fructicola* and with 13 similar isolates of *M. laxa*. Isolates of the latter two species came from diverse Rosaceae from the United States and represented all available morphological variants. Also, fruits of 'Bartlett' (*Pyrus communis*) and 'Kieffer' pears and 'Golden Delicious' apples (*Malus sylvestris* Mill.) were aseptically inoculated in the laboratory with the Beltsville isolates. Symptoms and signs were noted, and the fungus was reisolated and compared with authentic herbarium material and with a European isolate of *M. fructigena*, ATCC 24976, cultured at the American Type Culture Collection, Rockville, Maryland. Dried cultures, mummies, microscope slides and numerous photographs are on deposit at the National Fungus Collections of our laboratory and living cultures are deposited with the ATCC. The following description and comparative account of *M. fructigena*, is based entirely on the Beltsville material and compares well with that given by Harrison and others outside North America (2,5,6,9,10,11,13). The characterization of *M. fructicola* is closely comparable with descriptions by Elliot (3) and by Honey (7). The American account of *M. laxa* does not differ from European accounts (2,13) although I have not compared cultures from the two areas.

Salient Characters of Beltsville Specimens

Monilinia fructigena (Aderh. & Ruhl.) Honey (Figs. 1,2,4)

Apothecia cupulate, stipitate, light brown, margin entire, the mature apothecium 3 mm in diam., anatomically similar to that of *M. fructicola* as recently described by Elliot (3); asci cylindrical, 8-spored, pore staining blue with Melzer's reagent, 160-180 X 9-11 μm; ascospores uniseriate, arranged obliquely or end to end within the ascus, hyaline, eguttate, smooth, narrow-ellipsoidal, generally with ends tapered but not pointed, and measure 9-11 X 5.0-6.6 μm (mode 10.0 X 5.5 μm); paraphyses unbranched, septate, 2-3 μm wide, not enlarged above; sporodochia on fruits solitary or confluent and matted on maturity, buff to light yellow-brown, 1-2 mm wide and up to 2 mm high; conidia elongate-ellipsoidal, 15-25 X 12-16 μm (mode 21 X 14 μm); seven day old colonies in an incubator at 25C and
Fig. 1. Sporodochia of Monilinia fructigena. A 'Kieffer' pear and a 'Redskin' peach inoculated with Beltsville isolate Batra-3008, photographed 12 da. after incubation at 25°C, approx. nat. size.

with 12 hour light-darkness cycle are 8.5 cm across, within 8th -11th day a circular cushion-like band of fluffy mycelium, 5-6 mm wide, 3-4 mm high, and about 5 cm from the colony center, is formed, underneath which appear loaf shaped, nearly superficial, initially discrete but eventually confluent sclerotia between 12th and 21st day. Two to four similar additional concentric circles are subsequently formed outside the first circle and monilioid chains of conidia are abundant throughout the colony. Apples, pears and peaches inoculated with M. fructigena remain rather compact, and the mycelium, ectostroma, and sporodochial masses are conspicuous, tough and matted.

The preceding account of apothecia of M. fructigena resembles that of the type, as given by Harrison (6). The vegetative and asexual stages compare well with the following material from Europe: ATCC 24976; exsiccatae on deposit at the National Fungus Collections: C. Roumeguère fungi selecti exsiccati 6566 and de Thümen, Mycotheca Universalis 477 and 1377.
Monilinia fructicola (Vint.) Honey

Elliot (3) gives an updated account of *M. fructicola* and my observations on 12 microscope slides, prepared by E. K. Cash in 1924, from the apothecial material of the type confirm this account. Apothecia of this species are uncommon at Beltsville but apparently common elsewhere in

North America (2, 5, 6, 7). The ascospores are ellipsoidal to ovoid, generally with rounded ends, hyaline, binucleate, and measure 10.5-13.0 X 4.5 - 6.6 µm. The sporodochia on fruits are granular, usually discrete, light gray or mouse gray, 0.5 - 0.75 mm wide and up to 1 mm high. The conidia are limoniform or ellipsoidal and measure 15-17 X 8-11 µm. The colonies grown under similar conditions as those for *M. fructigena* are grayish to olive gray, and the sclerotial masses, though concentric, are ill-defined, thin, and mostly intramatrical. Apples and pears inoculated with *M. fructicola* are spongy or soft and sporodochia on the fruit surface are inconspicuous or lacking.

Monilinia laxa (Aderh. & Ruhl.) Honey

This is a well recognized European species and its biology and cultural characteristics are subtly but consistently different from those of *M. fructigena* (2,11,13) and *M. fructicola*. I did not examine any living material of it from overseas. The North American west coast *Monilinia* causing blossom blight and fruit rot of stone fruits has been referred to as this species but without critical, comparative investigations, probably because of quarantine considerations. The western United States isolates of *M. laxa* were compared with the eastern isolates of *M. fructi-
gena and M. fructicola. Except for its slower, scanty, and effuse growth, and lobed intramatrical margin, M. laxa does not morphologically differ appreciably from M. fructicola. Apothecia of M. laxa were initially reported from Germany and twice from England (6,12). The ascospores have two or three oil drops and rounded ends. The light gray sporodochia are 0.5-0.75 mm wide and 0.5 mm high and the conidia are ellipsoidal, 12-18 X 9-10 µm. According to Wormald's (13) description of cultures of M. laxa, the western United States brown rot of *Monilinia* may well be congeneric with the European species.

CONCLUSIONS AND DISCUSSION

I investigated herbarium material or cultures of many populations of 23 species (over 700 herbarium specimens and 160 cultures) of the approximately 30 species recognized for *Monilinia* and have critically studied the descriptions of the rest. In general, the external apothecial characters and asci, ascospores and paraphyses have limited value in delineating a species. In seven species of *Monilinia* from Japan, Harada (4) found asci and ascospores rather similar in appearance but most species could be separated from each other on the basis of shape and size of conidia and general colony characters. Taken as a whole, one or two micromorphological, subtle but consistent cultural characters, and symptoms and signs of the diseased material, as indicated above, are available to delineate *M. fructigena*, *M. fructicola* and *M. laxa*. The latter two species are distinct from each other, as judged from electrophoresis (11).

M. fructigena is predominantly restricted to Europe, Western USSR, Turkey, Iran, Israel, Korea, Japan and Morocco. These reports are backed by adequate data on fungus morphology, symptomatology, or both. Since *M. fructicola* is unknown from Eurasia, the presumed primary gene center of *M. fructigena*, it would be important to know what factors have kept apart the two species, particularly since (1) both species have a wide host range in their native areas (13), (2) there has been considerable reciprocal traffic of fruits and nursery stock, and (3) the fungi do overwinter in cankers of Rosaceae (although *M. fructicola* does not survive for long in cankers). Such information would be useful to adequately assess the potential or actual threat of each species after their entry and establishment outside their present geographic range.

At Beltsville in my studies in a related program on
brown rot fungi, *M. fructigena* was not recovered from stone fruits although several hundred isolations were attempted from blossoms, twigs, and fruits during 1973 through 1978 and several thousand fruits were examined in the field. It only came from one mummied 'Kieffer' pear during the spring of 1974 and from several fruits of the same cultivar found on the ground during October, 1975. *M. fructicolae*, on the other hand, was the commonest fungus observed during surveys of orchards of stone fruits, including apricots (*Prunus armeniaca* L.), plums (*P. domestica* L. and allied species), peaches and nectarines (*Prunus persica* (L.) Batsch and its var. *nectariana*) at Beltsville. It also occasionally attacked diverse apples and pears.

Since I have been unable to recover apothecia or cultures of *M. fructigena* from additional mummies of 'Kieffer' pears collected from the initial site or to isolate the fungus from marked "cankers", the primary source of inoculum cannot be pin-pointed. Additional critical surveys must be conducted to confirm my findings and before implementing any control measures, including containment by quarantine.

ACKNOWLEDGEMENTS

Harry Keil, Fruit Laboratory, Beltsville, provided counsel on brown rot fungi, and Frances Maclary and Patricia Millner, both of this laboratory, maintained cultures used in this work.

LITERATURE CITED

6. ------. 1935. Brown rot of fruits and associated

A PRELIMINARY ACCOUNT OF THE TAXA DESCRIBED IN CALONECTRIA

AMY Y. ROSSMAN*

Plant Pathology Herbarium, Cornell University
Ithaca, New York 14853 USA

SUMMARY

Taxa described in Calonectria are reevaluated based on a study of type specimens. If unrelated to Calonectria, nectrioid species with multiseptate ascospores are returned or transferred to Nectria, placed near related, uniseptate species. Fourteen names are transferred to Nectria: N. albosuccinea, N. calamii, N. coccidophaga, N. collapsa, N. cyathula, N. erythrina, N. geraakensis, N. gymnosporangii, N. lagerheimiana, N. moniscula, N. novae-zealandica, N. pseudopesis, N. varians and N. vernonii. Five new names are proposed for species whose epithets are preoccupied in Nectria: N. astromata, N. byssophila, N. jaactata, N. megaspora and N. microleuca. Additional new combinations of species in the Hypocreales are Allonecetella guarantica, Nectriella sceptri and N. obvoluta. Two names are transferred to ostropalean genera: Absconditella duplicella and Cryptodiscus rutilus. In the Dothideales the new combination Hyalocrea arcuata is proposed. Three names are transferred to Tubeufia, T. aurantiella, T. pachythrix and T. stromaticola and one to Masearia, M. viburnicola. Among the pleosporaceous fungi occurring on Meliola six new combinations are proposed: Byssocallis capensis, Melioliphyla appendiculata, M. coralloides, M. erysiphoides, M. longiseta and M. volutella.

The genus Calonectria de Notaris has been redescribed by Rossman (1979) based on the monotype species, C. daldiniana, a later synonym of C. pyrochroa. Calonectria now includes only those species having an ascocarp wall structure similar to C. pyrochroa and a Cylindrocladium anamorph. In the past Calonectria has included all species which are like Nectria but have multiseptate ascospores (Saccardo, 1883; Seaver, 1909a; Roger- son, 1970). With an increased knowledge of the correlation of ascocarp wall structure with anamorph, several workers (Booth, 1959, 1978; Samuels, 1976a, 1978; Samuels & Rossman, 1979) have defined groups of related species within the Nectria-complex. These include species from genera related to Nectria but previously separation on the basis of ascospore septation. Thus, segregation of genera based on ascospore characters has been shown to be artificial. In this paper the taxa described in Calonectria are reevaluated. Nectrioid

*Presently an Anna E. Jenkins Postdoctoral Fellow.
species, which are unlike *Calonectria sensu stricto* but have multiseptate ascospores, are returned or transferred to *Neatria*, placed near related species having uniseptate spores.

Each specific epithet is listed alphabetically in *Calonectria*, followed by nomenclatural and taxonomic synonyms. Infraspecific epithets follow the specific epithet in *Calonectria* under which they were proposed. The names which I accept are capitalized. All references to herbaria are abbreviated using Holmgren & Keuken (1974). Specimens at FH are housed in special collections for which the following abbreviations are used: FH-C, Curtis herbarium; FH-ex, undistributed exsiccati; FH-G, general herbarium; FH-H, von Höhnel herbarium; FH-P, Patouillard herbarium. Special collections cited from CUP are CUP-A, Atkinson herbarium and CUP-F, Fairman herbarium. Except for placing the anglicized version of the country first, the unedited citation of the type specimen is reproduced here as printed in the original description, including punctuation and italicized words. Reference to a name which has been placed in *Calonectria* is noted in the synonymy and should be cross-checked under that epithet for further information. Unless type or authentic specimens were located and adequate for microscopic examination, I have not speculated on the identity of a taxon. Most older descriptions and illustrations are inadequate to determine ascus type, a character now considered of primary importance.

Type: Germany. Auf der Rinde einer abgestorbenen noch stehenden Rottanne in der Rathenower Stadtforst. 22. 11. 05.

The holotype specimen (B) has nothing on it resembling the described fungus. From the description this species may be a later name for *Nectria hirta* (≡ *Calonectria hirta*, ≡ *Trichonectria hirta*) but without a good authentic specimen this synonymy cannot be adequately determined. *Trichonectria aculeata* is the monotype species of *Trichonectria* Kirschst.

Calonectria adianti Rehm, Hedwigia 37:197. 1898.

Type: Brazil. Auf Adiantum trapeziforme. Tubarao. Ule no. 1526 a. H. B.

An isotype specimen at FH-G with the additional data "Estado de Sta. Catharina: Mai 1890" lacks any fungus resembling the description. In FH-H another isotype "ex Herb. Berlin" again has no suitable fungus. At S there are notes made by Rehm of the type "ex Herb. Berol." but no specimen. The holotype specimen at B has apparently been destroyed. The type description, Rehm's notes and a description by Batista, et al. suggest that this species may be *Melioliphila balanseana* (≡ *Calonectria balanseana*) as are many later spec-
imens labelled C. adianti. Without examining the type specimen, Pirozynski (1976) transferred the species to Melioliphila.

Caloneoctria agnina (Rob. ex Desm.) Sacc., Michelia 1:311. 1878.

Type: France. Ad ramos sicc o Ulmi, autumno. Nob.

In discussing this species, Desmazières (1846) stated "Les branches et surtout les rameaux secs de l'Orme, exposées à une humidité prolongée, donnent naissance à cette Sphérie, l'une des plus jolies et des plus petites que nous connaissions." The label of Desmazières, Pl. Crypt. France #1765, issued in 1849 as Sphaeria agnina, reads "En automne, sur les branches et surtout sur les rameaux secs de l'Orme, exposées à une humidité prolongée." Although not specifically designated, Desmazières's comments in the original description and on the packets indicate that this exsiccat number is the type collection. Many isotype specimens of Desmazières, Pl. Crypt. France #1765 have been examined (BPI, BR, FH-H, H, NY, UPS). The specimen at NY is here designated the LECTOTYPE. As Weese (1914a), Wollenweber & Reinking (1935) and Pirozynski (1975) have suggested, this name is found to be a later synonym of Nectria decor-a (≡ Caloneoctria decor-a).

≡ NECTRIA ALBOSUCCINIA (Pat.) Rossman, comb. nov.

The holotype specimen (FH-P) is in good condition. This species is hypocreaceous but is unrelated to Calonectria as recently circumscribed by Rossman (1979). The ascocarp wall of Nectria albosuccinea is white and rough-warted, similar to that of Nectria rigidiuscula (≡ Calonectria rigidiuscula); however, N. albosuccinea lacks a well-developed stroma. N. albosuccinea is also reminiscent of N. astromata (≡ C. verrucosa), the latter having longer ascospores. The specimen described by Petrak (1948) as C. albosuccinea was examined (BPI). It has dark-red ascocarps on a well-developed stroma, not at all like Patouillard's type specimen. This mistaken concept of the species is perpetuated in Dennis (1970).

Type: Brazil. In foliis vivis Laurineae cujusdam in nemorosis prope Apiahy, Jul. 1881, leg. Cl. Dr. J. Puiggari, sub. n. 1507. (no. 1661).
The holotype (LPS) is a good specimen of *Melioliphila volutella* (= *Calonectria volutella*) having bitunicate asci and white, setose ascocarps which occur on *Meliola*. The isotype (FH-P) is different from the holotype specimen. The isotype is *Melioliphila balaneana*, closely related to *M. volutella*, but lacking hairs on the ascocarp. Spegazzini (1881) described hairs on the ascocarp, stating that they often disappear with age. Balansa, Pl. du Paraguay #3796 (NY) issued as *C. ambigua* is *Melioliphila balaneana* (= *C. balaneana*). *C. ambigua* is the monotype species of *Subiculicola* Spég., a synonym of *Melioliphila* Spég., whose monotype species is *C. graminicola* Stevens, a synonym of *M. volutella* (= *C. volutella*). These genera were published on the same day. Pirozynski (1976) stated that *Subiculicola* is questionably synonymous with *Melioliphila*. In accordance with Article 57 of the International Botanical Code (Stafleu, et al., 1972) and Pirozynski's apparent preference, *Melioliphila* is chosen as the correct name.

Type: Brazil. Sobre las hojas vivas de una *Sapindacea*?, cerca de Apiahay, enera 1888 (J. Puiggari, no. 1507).

The label of the specimen sent from LPS as the holotype of this variety reads "TIPO. No. 1660. S/. Sapindacea Brasil, Apiahay, I-188. Leg. J. Puiggari, nro. 1507." Although the collection data given in the type publication are slightly different from those on the packet, the Puiggari number is the same. In addition, these collection data and Puiggari number are almost the same as that of the typical variety. Years after he described *Calonectria ambigua* (= *Melioliphila volutella*), Spegazzini may have noticed the ascocarps of this variety on the holotype specimen of *C. ambigua* and split the collection. The hyperparasitic species on *Meliola* often occur intermixed on the same colony. The specimen has no ascocarps. The drawings on the packet and published description of *C. ambigua* var. *exappendiculata* suggest *Melioliphila balaneana* (= *Calonectria balaneana*).

Type: Philippines. Mt. Apo, Davao Prov., Mindanao, auf stark, verfaulten Blattscheiden von *Musa textilis*, June, 1924, leg. M. S. Clemens, nr. 5268.

The holotype specimen may beat W but Petrak's specimens are not yet available for study.

Calonectria appendiculata Rehm, Hedwigia 37:197. 1898.

≡ *MELOLIPHILA APPENDICULATA* (Rehm) Rossman, comb. nov.

Type: Brazil. Folia Euphorbiaceae. Ule no. 927. H. B.

The holotype specimen at B has apparently been destroyed; therefore, the isotype specimen in FH-H "ex Herb. Berlin" is here designated the LECTOTYPE. The lectotype reveals a *Melioliphila* species, close to *M. balaneana* (= *Calonectria balaneana*).
balaneseana) and M. volutella (= C. volutella) but the asccarps have short, blunt hairs around the ostiole and hyphae radiating from the sides and base of the ascocarp. Later collections, issued as C. appendiculata, Rehm, Ascomycetogen #1689 (BPI, CUP) and Theissen, Decades Fungorum Brasiliensum #149, are Meliophila balaneseana.

≡ **HYALOCREA ARCUATA** (Hansf.) Rossman, oomb. nov.

Type: Uganda. Entebbe Road, in plagulis Asterinae in foliis Tetraceriae potatoria, Hansford no. 2797.

The holotype specimen at IMI has been examined as well as several paratype and authentic specimens (BPI: Hansford 2796 & 3553; PREM: Hansford 3490). This species is dothideaceous, having bitunicate, saccate ascii with few ascii per ascocarp, and belongs in *Hyaloorea*, whose monotype species, *H. epimyces* (= *Calonectria epimyces*), has light-yellow ascocarps and occurs on the carbonous stromata of other fungi.

The data on the type collection are somewhat altered in the original publication and, as stated on the isotype packet (CUP-A), should read "New York, Cayuga Lake Basin, McKinney's Glen, leg. A. J. Pieters, Oct. 27, 1894, #5240." The holotype (S-as *Calonectria chlorinella*), isotype specimen (CUP-A) and isotype slides (FH-G, IMI) were examined. In agreement with C. T. Rogerson, New York Botanical Garden, this name is found to be a later synonym of *Herpotrichia mutabilis*, as are numerous specimens deposited as *C. atkinsonii*.

Calonectria aurantiella Penz. & Sacc., Malpighia 11:515. 1897.
≡ **TUBEUFIA AURANTIELLA** (Penz. & Sacc.) Rossman, oomb. nov.

Type: Java. Tjibodas, ad ligna putrida superficie obscurata, 1.III.97. No. 126.

Although the fragmentary isotype at FH-H has nothing on it, the holotype specimen (PAD) reveals that this species belongs in *Tubeufia*, close to *T. palmarum* (Torrend) Samuels, Rossman & E. Müller, 1979. Occurring with dematiaceous fungi on well-rotten wood, *T. aurantiella* has fleshy ascocarps covered with bright-yellow, crystalline granules, numerous pseudo-paraphyses, bitunicate ascii and long, fusiform ascospores.

Calonectria aurea (Crouan & Crouan) Sacc., Michelia 1:344. 1878.
≡ **NECTRIA AUREA** Crouan & Crouan, Florule de Finistère p. 37. 1867.

Type: France. Finistère, sur les tiges mortes de Ronce. Hiv. r. r.
The holotype specimen at CO was examined. Although the ascospores are multiguttulate, they have only one septum. The species is unrelated to Calonectria, as redefined by Rossman (1979), and is retained in Nectria, close to members of the N. episphaeria-group as delimited by Booth (1959).

Calonectria aurea Ade, Hedwigia 64:304. 1923, non C. aurea (Crouan & Crouan) Sacc., 1878.

Type: Germany. Auf der Innenseite abgeworfen, alter Buchenrinde in Gesellschaft einer Melanomma am Nordhang des Ruckberges bei Reussendorf (Rhön) auf Basaltboden bei ungefähr 850 m Höhe. 25.5.1915.

The holotype specimen could not be located. The occurrence with carbonous pyrenomycetes, color and hairs of the asccocarp, ascospore size, shape and septation, and associated Helicomyces, all suggest that this is Tubeufia cerea (≡ Calonectria cerea). Until an authentic specimen is located, this species cannot be accurately characterized.

Calonectria aurigera (Berk. & Rav.) Sacc., Michelia 1:308. 1878.

≡ NECTRIA AURIGERA Berk. & Rav. (ut 'auriger'), Grevillea 4:46. 1875.

The isotype specimen (FH-C) and isotype slide (IMI) reveal this to be a good hypocreaceous species belonging to the Nectria aquifolii-group as delimited by Booth (1959). N. aurigera provides the earliest epithet for the North American species often mistakenly called Sileoconectria polythalama sensu Ravenel, Fungi Carol. #541 and sensu Seaver (1909a). The holotype specimen of Nectria polythalama (≡ Calonectria polythalama, ≡ Sileoconectria polythalama) at K proves N. polythalama to be a later synonym of Thyronectria pseudotrichia (Schw.) Seeler as suggested by Dingley (1952). Ellis, North Amer. Fungi #79 (CUP, FH-ex, NY) is correctly named as N. aurigera.

Calonectria bahiensis Hempel, Bol. Agric. (Sao Paulo) 5:22. 1904.

Type: Brazil. No Estado da Bahia, vivendo como parasita na casca do tronco do Cacaeeiro.

The holotype specimen (LPS) shows this species to be lichenized or perhaps, xylariaceous, as suggested by Spagazzini's combination. The name is not mentioned in Francis (1975). The semiimmersed ascocarps are carbonous, containing loose ascospores which are large, 60-70 x 20-23 µm, nonseptate and dark-brown with germ pores at each end. The disposition of this species could not be determined.
≡ Calonectria melioloides f. microspora Rehm, Hedwigia 37:196. 1898.
≡ Calonectria gyaelectoidea Rehm, Hedwigia 37:197. 1898.
≡ Calonectria warburgiana P. Henn. in O. Warburg, Monsunia 1:25. 1899.

Type: Philippines. Tonkin, in pagina superiore foliarum Bambusae speciei cujusdam.

Although not specifically stated, Roumeguère, Fungi selecti exs. #4452 collected in December 1887, has the above collection data and is assumed to be the type. Many specimens of this number have been examined (BPI, BR, FH-P, FH-ex, NY). The one at NY is here designated the LECTOTYPE; the others become isolectotypes. This species has fleshy, white asccarps without hairs, bitunicate asci and occurs on Meliola.

[Calonectria balanseana Teng, Sinensia 4:276. 1934. nom. nud.]

Specimen cited: China. Kiangsu, Nanking, Teng 1285.

In an article on the Fungi of Nanking, Teng (1932) listed the specimen cited above as "Calonectria balanseana Berl., in Roum." Teng (1934) included this specimen from his earlier publication as a synonym of Calonectria bambusae (Hara) Höhnel referring to "Calonectria balanseana Teng, Contr. Biol. Lab. Sci. Soc. China, Bot. 8:9. 1932. [non Berl.]." In so doing Teng created a later homonym which is also a nomen nudem. This invalid name is listed by Tai (1937).

Type: Brazil. St. Catherine bei Blumenau auf grasbewohnender Balansia redundans A. Møller.

This is the monotype species of Weesia Höhnel. The type specimen is not at B or FH-H and has not been located.

≡ THYRONECTRIA BALSAMEA (Cooke & Peck) Seeler, J. Arnold Arbor. 21:442. 1940.

Isotype specimens (NY, NYS) were examined. This species has muriform ascospores and is, thus, justifiably placed in Thyroneectria; however, it closely resembles Scoleconectria cucurbitula (= Caloneectria cucurbitula), separated by the slightly shorter, wider ascospores with irregular, longitudinal septa. Both species belong in the Neectria aquifolii-group as delimited by Booth (1959). For a complete list of synonyms, consult Rossman (1977) and Seeler (1940).

Type (translated from Japanese): Japan. Mino and Sagami, on stromata of *Phyllachora phyllostachydidis* on bamboo.

Although not stated in the type description, Sydow, Fungi exotici exs. #385 issued in March, 1915 and labelled "nov. gen. et spec." is taken to be the type collection. These were the only specimens of this species encountered and the collection data in the type description match those on the exsiccata packets: "Japan: Kawaye-mura, prov. Mino. Parasitica in Phyllachora Phyllostachydidis Hara ad folia Phyllostachydidis bambusotidis. 11. 11. 1911. K. Hara." Specimens of this exsiccata number have been examined from B, BPI, C, CUP, DAOM, FH-G, FH-H, NY and S. The one at NY is here designated the LECTOTYPE; the others become isolectotypes. An authentic collection (FH-H, S) was made in January, 1912. This species appears hypocreaceous having brown, fleshy ascocarps and uniseriate asci but is quite unlike any other member of the Neectria-complex. The small, pyriform ascocarps are crowded together, partially immersed in a byssoid stroma of brown hyphae. At present, *M. bambusae*, the monotype species of Miyakeamyces, is retained in that genus, related to Neectria.

Type: France. Golfe-Juan, ad corticem uvidem Bambusae, Villa des Cocotiers, Febrero, 1899.

The type specimen is not at PC and has not been located.

The holotype specimen of this recently described species has not been examined. This species was placed in Caloneectria solely on the basis of the multisepate ascospores. From the description and illustration, it appears to be unlike *Caloneectria pyrochroa* (= *C. dalandiniana*, the monotype species of *Caloneectria*) (Rossman, 1979) and should be placed with allied species in the genus Neectria.
≡ Dialonecricia bloxami (Berk & Br.) Cooke, Grevillea 12:100. 1884.

Type: England. Twycross, on dead stems of herbaceous plants, Rev. A. Bloxam, Brit. F. #781.

After examining the holotype (K) and authentic specimens (K, PC), I agree with Booth (1959) who stated that Nectria bloxami is a synonym of N. arenula. N. arenula is redescribed and illustrated by Samuels (1978) and Booth (1959). Many specimens labelled N. bloxami are Nectriella sceptri (≡ Calonectria sceptri) including Rehm, Ascomyceten #1466 (BR, CUP, FH-H, S) issued as C. bloxami.

[Calonectria bloxami var. umbelliferarum Hohnel, Ann. Mycol. 2:49. 1904. nom. prov.]
≡ Charonecricia umbelliferarum Hohnel, Hedwigia 42:187. 1903.

Type: Austria. Tirol, an durren Umbelliferen-Stengeln, Tumpener See im Ötztal.

The holotype specimen (FH-H) has the additional information "Aug. 99, Hohnel, 27 XII 1902". This specimen contains only a few bumps which suggest Nectriella (≡ Charonecricia Sacc. fide Seaver, 1909a) but it is too scanty to be identified accurately. Rehm, Ascomyceten #1867 issued as Charonecricia umbelliferarum (CUP, FH-H) is a Nectriella with a ring of short, thick hyphae around the ostiole. Hohnel (1904) stated that Pseudodiploidia umbelliferarum Hohnel may be the imperfect state of Charonecricia umbelliferarum and that, according to Rehm, this species should be a variety of Calonectria bloxami, which Hohnel, therefore, proposed provisionally.

Calonectria blumenaviae P. Henn., Hedwigia 41:6. 1902.

Type: Brazil. St. Catherine bei Blumenau auf Bambusstamm. Marz, 1891. No. 47.

In FH-H there is a specimen which is undoubtedly a fragment of the holotype "ex Herb. Berlin" but no hypocreaceous fungus is left. The specimen at B apparently no longer exists. The description suggests Nectria calami (≡ Calonectria calami) but without a type specimen, this cannot be accurately determined.
Calonectria brongniartii (Crouan & Crouan) Sacc., Michelia 1:314. 1878.
≡ Neotria brongniartii Crouan & Crouan, Florule du Finistère p. 37. 1867.

Type: France. Finistère, sur le Frullania dilatata, sur un vieux Houx, aut. r. r.

The holotype and isotype specimens have been examined at CO. I agree with the placement of this species in Pseudonectria by Dobbeler (1978) who presented a detailed description, illustrations and synonyms of this species.

≡ NECTRIA BYSSOPHILA Rossm., nom. nov.

Type: Ceylon. On moss on tree trunks, Nuwara Eliya, 19 June 1927.

The holotype specimen (K) has been examined. This species is quite unlike Calonectria pyrochroa (= C. daldiniana, the monotype species of Calonectria) (Rossman, 1979). Neotria byssophila belongs in the Neotria muscivora-group as delimited by Samuels (1976a). Neotria bryophila (Desm.) Sacc., 1878, and Neotria muscivora (≡ Calonectria muscivora) require that this species be given a new specific epithet when placed in Neotria. Occurring on moss, the yellow-orange asccorps are partially immersed in a byssoid stroma, as suggested by the new epithet. The ascocarps are composed of small, thin-walled cells with an outer prosenchymatous layer of hyphae. The asci are unitunicate and the ascospores are very long-fusiform, curved to sigmoid, up to thirteen septate, 125-230 x 2-2.5 μm.

Calonectria calami P. Henn. & E. Nym. in O. Warburg, Monsunia 1:163. 1899.
≡ NECTRIA CALAMI (P. Henn. & E. Nym.) Rossman, comb. nov.

Type: Java. Hort. Bogor auf Blattscheiden von Calamus sp., 4 März 1898. (E. Nyman)

There are two isotype specimens at FH, one in the Hohnel collection with slides and one in the general herbarium. Because the holotype at B, studied by Weese (1927), was apparently destroyed, the isotype specimen in FH-G is here designated the LECTOTYPE. This is a good hypocreaceous species but is quite unlike the type of Calonectria, C. pyrochroa (= C. daldiniana), as redescribed by Rossman (1979). Although similar to Neotria pseudopenesina (= C. pseudopenesina), Neotria calami is different-
tiated by the smaller, orange ascocarps which become collapse when dry, the ascocarp wall having a middle, pigmented layer, ascospores 19-30 x 4-5 μm, and occurrence on monocot wood.

Calonectria callorioides Penz. & Sacc., Malpighia 11:515. 1897.

The holotype specimen at PAD no longer contains any suitable fungus and the isotype at FH-H is in very poor condition. The remnant of a white, translucent ascocarp has questionably unitunicate ascii with a distinct apical ring, and hyaline, fusiform ascospores, 27-29 x 3.5-4 μm, which are 3- to 5-septate. The illustrations in the type description suggest that the ascii are bitunicate. Without a better type specimen, this species cannot be accurately characterized.

See addendum on page 556.

≡ Scoleconectria canadensis (Ellis & Everh.) Seaver, Mycologia 1:199. 1909.

Type: Canada. Ottawa, on bark of elm limbs, August, 1883. Macoun (No. 311).

The holotype specimen has not been located and a probable isotype labelled Sphaerostilbe canadensis "Mus. bot. Berol. ex Herb. Ellis" (FH-H) has no fungus left. Authentic specimens (DAOM, NY-both Macoun #225 coll. September 28, 1883) and many exsiccata specimens issued by Ellis & Everhart reveal *Nectria canadensis* to be a member of the *Nectria aquifolii* group as defined by Booth (1959). Like *Nectria aurantiaca* (Tul.) Jaczewski, *N. canadensis* occurs on *Ulmus* sp. and has a stibolid anamorph, ascocarps on a well-developed stroma, an ascocarp wall structure like *N. aurantiaca* and ascospores which bud outside the ascus, filling the ascocarp with ascogenous. Differences between these species are based mainly on ascospore size and septation. If the *Nectria aquifolii*-group were recognized as a separate genus, these species would be placed in *Scoleconectria*. However, because of the close relationship of this group to the *Nectria cinnabarina*-group as delimited by Booth (1959), which includes *N. cinnabarina* (Tode ex Fries) Fries, type species of *Nectria*, all species of the *N. aquifolii*-group should be retained in *Nectria*, regardless of ascospore septation. *Nectria canadensis* was distributed as Ellis & Everh., North Amer. Fungi, second series #2547 (BPI, CUP, OSC), Ellis & Everh., Fungi Columbiana #25 (BPI, CUP) and #226 (BPI, CUP, FH-ex), the last two numbers as *Calonectria canadensis*.
Calonectria capensis Doidge, Bothalia 1:218. 1921
≡ BYSSOCALLIS CAPENSIS (Doidge) Rossman, comb. nov.

Type: Republic of South Africa. Cape Province, Humansdorff District, Storms River, parasitic on Irene Podocarpi on leaves of Podocarpus elongata, 15.5.23. Doidge (17167).

The holotype specimen (PREM) has bright-yellow, fleshy asccarps and bitunicate asci. This species belongs in the Pleosporales, close to Melioliphila, but, due to the bright-yellow hyphae and asccarps, is more correctly placed in the related genus Byssocallis H. Syd. Unlike B. phoebeus, the type species of Byssocallis, B. capensis lacks setae on the ascocarp and has an associated Eriomycopsis anamorph as do several Melioliphila species.

Type: Germany. Bayern, Oberbayern, Chiemgauer Alpen, nordseitige Kalkfelsabbrüche am Weg von der Schlectenberger Alm nach Hohenaschau, 900 - 1000 m, gemeinsam mit Micarea cyaneoceans und Myxophora amerospora, 29.IX.1974 J. POELT (Holotypus GZU; Isotypus Dö 1890).

The holotype specimen of this recently described species has not been examined. This species was placed in Calonectria solely on the basis of the multisepitate ascosporae.

From the description and illustration, it appears to be unlike Calonectria pyrochroa (= C. daldiniana, the monotype species of Calonectria) (Rossman, 1979), and should be placed with allied species in the genus Neotria.

Type: Uganda. Kawanda, in plagulis Meliolae markhamiae in foliis Markhamiae platycealycis, Hansford no. 2554.

Although said by Hansford to be deposited in IMI, the holotype specimen could not be located there. Several authentic specimens examined at (BPI: Hansf. 3293, 3435, 3552; IMI: Hansf. 2699, 3293; PREM: Hansf. 3293, 3552) and the type description prove this species to be a later synonym of Neotria leucorrhodina (= Calonectria leucorrhodina). Hansford (1946) separated Calonectria limpida (= N. leucorrhodina) from C. cephalosporii "mainly by the constant presence of the conidial state" in the latter. Hansford grew the fungus in culture from both conidia and ascosporae but was unable to induce perithecial formation. Gams (1971) examined the Cephalosporium anamorph of many collections identified as C. cephalosporii and suggested that this imperfect was not a typical Acremonium (= Cephalosporium) but that without a living culture its taxonomic position could not be determined. Calonectria ukolayii, another synonym of Neotria leucorrhodina, also has this Acremonium-like anamorph, which is described as Cylindrocarpon ukolayii Thaung. The phialidic anamorph apparently belongs to Neotria leucorrhodina.
 = Neectria fulvida Ellis & Everh., J. Mycol. 1:140. 1885.
 = Dialonectria fulvida (Ellis & Everh.) Ellis & Everh., J. Mycol. 2:122. 1886.

Type: United States. North Carolina, parasitic on Sphaeria (Diatype) stigma, Car. Inf. #2315.

The scanty, holotype specimen at K was examined only macroscopically. Booth (1964) examined this specimen and has accurately characterized the species which seems to be correctly placed in Tubeufia (Pleosporales). Unlike the type species of Tubeufia, T. paludosa (Crouan & Crouan) Ross. (= T. javanica Penz. & Sacc.) which has translucent, white ascocarps, T. cerea has yellow-brown ascocarps covered with a yellow scurf. Both species are associated with helicosporous anamorphs. For a description, illustrations and complete list of synonyms of T. cerea, see Booth (1964) and Rossman (1977).

Calonectria chlorinella (Cooke) Sacc., Syll. Fung. 2:545. 1883.
 = THYRONECTRIA CHLORINELLA (Cooke) Seeler, J. Arnold Arbor. 21:444. 1940.

Type: United States. seaboard of South Carolina, on bark of Ulmus Americanus.

In the original publication the author is cited as "Cooke in Rav. Fungi Amer., No. 736." I have examined specimens of this exsiccata number at BPI, CUP, NY and FH-G. Seeler (1940) considered the specimens at K and FH to be types. Based on ascospore septation, this species is correctly placed in Thyronectria; However, it is related to members of the Neectria aquifolii-group as delimited by Booth (1959). The muriiform, primary ascospores bud in the ascus and the ascocarps are covered with a green-yellow scurf. Ellis & Everhart, North Amer. Fungi, second series #2546 issued as C. chlorinella (BPI, CUP, OSC) is Thyronectria xanthoxyli (Peck) Ellis & Everh., and Ellis & Everhart, Fungi Columbiana #2006 issued as C. chlorinella (BPI, CUP, NY, NYS) is Herpotrichia mutabilis (Pers. ex Fries) Winter, as are many other specimens deposited as C. chlorinella.

I have examined a slide of the holotype specimen at IMI and an authentic specimen (BPI: Hansf. 3562). The white, setose ascocarps contain bitunicate ascii and 3-septate, fusiform ascospores and are associated with an Eriomycopsis anamorph. This name is found to be a synonym of Melioliphila volutella (≡ Caloneectria volutella).

Caloneectria ciliatum (Link) Snyder & Hansen, Amer. J. Bot. 32:664. 1945.

Automatic type: type specimen of Fusarium ciliatum Link.

This Caloneectria name is incorrect and cannot be used for the ascigerous state because the new combination is based on Fusarium ciliatum, a nomen anamorphosum.

Caloneectria cinnabarina P. Henn., Hedwigia 36:220. 1897.
≡ OPHIONECTRIA TRICHOSPORA (Berk. & Br.) Sacc., Michelia 1:323. 1878.

The type specimen in FH-G has been designated the lectotype (Rossman, 1977) with isolectotypes at FH-P, NY and S. These specimens have a bright-orange subiculum from which sporulates the anamorph of Ophionectria trichospora, Antipodium spectabile Piroz. O. trichospora, the monotype species of Ophionectria, was redescribed and illustrated by Rossman (1977).

Type: Germany. Auf Faulender Pappe in der Rathenower Stadtfur. 16.10.04.

The holotype specimen is not at B and has not been located.

Caloneectria citrinaurantia (Delacr.) Sacc., Michelia 1:314. 1878.

Type: France. Sur les Saules à Vannerie, a Saint-Romain-sur-Vienne, Février, 1859.

Specimens of this exsiccati number have been examined from BPI and BR. Of the three isotype specimens on one herbarium sheet at BR, I have marked the top specimen and here designate it the LECTOTYPE; the other specimens of this number become isolectotypes. Rabenhorst, Fungi europei #325 labelled "ad ramulos salicinos, Februario 1859, St. Romani -ad - Vigennam, in agro pictax. Legebat T. de Lacroix Pter", is apparently the same collection and was examined from BPI, BR, FH-H, NY and S. This species has small, translucent-yellow ascocarps crowded on a well-developed stroma, unitunicate ascii and hyaline, one-septate ascospores. Petch (1938) and Booth (1959) have redescribed and illustrated Nectria citrinaurantia.

≡ **NECTRIA COCCIDOPHAGA** (Petch) Rossman, comb. nov.

The holotype (K) and an isotype specimen (FH-G as 'coccidophaga') were examined. This species is hypocreaceous belonging in *Nectria*. The red-orange ascocarps are immersed in a well-developed stroma covering the scale insects. The wall of the ascocarp becomes purple in 2% KOH while the darker stroma does not. The asci are unitunicate, clavate, without any apical apparatus; the ascospores are ellipsoid, 10-17 x 6-8 μm, 3-septate, slightly constricted at the middle septum. Petch (1921) described the associated fungus, *Microcera tasmaniensis* McAlp., which appears to be a *Fusarium*. *Nectria coccidophaga* is certainly not a synonym of *Gibberella puzicaris* (Fries) Sacc., as stated by Wollenweber & Reinking (1935).

Type: Java. Buitenzorg, auf der Rinde von *Coffea arabica*.

The holotype specimen was not at B and has not been located.

I have examined slides of the holotype at IMI. This species belongs in *Calonectria* as circumscribed by Rossman (1979) and is related to the type species *C. pyrochroa* (= *C. daldiniana*). *C. colhounii* has a *Cylindrocladium* anamorph which causes a disease of tea. This species is redescribed and illustrated by Peerally (1974e).

≡ **NECTRIA COLLAPSA** (Starb.) Rossman, comb. nov.

The holotype specimen (S) was examined and found to be a *Nectria* with unknown affinities. The dark-yellow ascocarps have a distinct collar around the apex, are immersed in a white byssus and are associated with a stilbaceous anamorph. The unitunicate, clavate asci contain one-septate, fusiform, punctate ascospores, 13-15 x 4-4.5 μm.
Calonectria copelandii P. Henn., Hedwigia 47:253. 1908.
Type: Philippines. Mindanao, Santa Cruz in foliis Orchidaceae 1316. April 1904 (Copeland n. 1317).

I have examined isotype specimens at BPI, FH-H, K and NY. I have been unable to find the described fungus on any of them.

Calonectria coralloides Maubl., Bol. Agric. (Sao Paulo) 16:315. 1915.
≡ ME LIOLIPHILA CORALLOIDES (Maubl.) Rossman, comb. nov.

In a later publication about this species, Maublanc (1920) cited the type specimen as "In foliis Clidemiae hirtae G. Don, supra mycelium Melioliæ Melastomacearum Spec.,... (no. 353)." A presumed isotype specimen (FH-P) with collection data matching parts of both descriptions has a printed label titled "A. Maublanc - Fungi Brasiliensis 353" and may be part of an exsiccata set. Because this was the only possible type encountered, the specimen in FH-P is here designated the LECTOTYPE. Hansford's combination was based solely on Maublanc's descriptions and drawings. Melioliphila coralloides has small, fleshy, white ascocarps, bitunicate ascii and fusiform, attenuate, three-septate ascospores. Although the ends of the ascospores are attenuate, they do not have cellular appendages or distinct cilia as in Paraneotiella, a genus erected for species of Paraneotria sensu Hansford (Pirozynski, 1976). Several species of Melioliphila have ascospores with elongate, tapering ends. M. coralloides is distinguished by the coralloid appendages on the ascocarps.

Type: Java. Buitenzorg, auf abgestorbenen Früchten von Theobroma cacao.

The holotype specimen is not at B and could not be located. Weese (1924) stated that this species is the smooth form of Calonectria sulcata, a synonym of Nectria rigidiuscula (≡ C. rigidiuscula). Wollenweber & Reinking (1935) considered C. cremea a synonym of C. rigidiuscula. Based on the above authors' opinions, the type description, illustrations and host, I accept the synonymy of C. cremea with N. rigidiuscula, a common, tropical saprophyte on woody substrates.
Calonectria crescentiae Seaver & Waterston, Mycologia 32:404. 1940.
= NECTRIA ERUBESCENS (Desm.) Phill. & Plowr., Grevillea 10:70. 1881.

Type: Bermuda. Smith's Parish, on a weathered shell or fruit rind of the calabash, Crescentia cujete L., Dec. 9, 1938.

Isotype specimens (BPI, K, NY) were examined. Samuels (1978) listed isotype specimens at NY which he examined. I have marked the one with Seaver's notes, illustrations and photographs as the LECTOTYPE. In agreement with Samuels (1978), I find this name to be a later synonym of Nectria erubescens (= Calonectria erubescens) in the Nectria arenula-group as delimited by Booth (1959) and Samuels (1978). Samuels (1978) re-described and illustrated both the teleomorph and anamorph of Nectria erubescens.

CALONECTRIA CROTLARIAE (Loos) Bell & Sobers, Phytopathology 56:1364. 1966.

Type: Ceylon. On stems of Crotalaria anagyroides and Tephrosia vogelii.

A possible type specimen at IMI was examined and found to belong in Calonectria as delimited by Rossman (1979). C. crotalariae was described and illustrated by Peerally (1974d). This species has a Cylindrocladium anamorph which is similar to that of Calonectria pyrochroa.

Calonectria cucurbitula (Tode ex Fries) Sacc., Michelia 1:312. 1878.
= Sphaeria cucurbitula Tode ex Fries, Systema Mycol. 2:415. 1823.
= SCOLECONNECTRIA CUCURBITULA (Tode ex Fries) Booth, Mycol. Pap. 73:15. 1959.

Type: Sweden. In cortice arborum frondosarum raro; frequens in Pino & Melia Azederach.

The type collection of Sphaeria cucurbitula was issued in 1822 as Fries, Scleromyceti Sueciae #263. Booth (1959) has re-described and illustrated Scoleconnectria cucurbitula. He designated the specimen at K the lectotype. I have examined an isolecotype (BPI) which agrees well with Booth's description. This is the type and only species in Scoleconnectria, a genus which could be used to accommodate the Nectria aquifolii-group as delimited by Booth (1959). S. cucurbitula is related to Thyronectria balsamea (= C. balsamea), differentiated by the slightly longer, narrower ascospores with irregularly-transverse septa.

Calonectria curtisii (Berk.) Sacc., Michelia 1:316. 1878.
= Nectria curtisii Berk., Grevillea 4:46. 1875.

An isotype specimen (FH-C) was examined. This name is found to be a later synonym of Nectriella sceptri (≡ Caloneectria sceptri).

≡ NECTRIA CYATHULA (H. Syd.) Rossman, comb. nov.

I have examined the holotype and authentic specimens (IMI). This species has small, translucent-red ascocarps and belongs in the Nectria episphereia-group as delimited by Booth (1959).

Caloneectria dacrymycella (Ny1.) Sacc., Michelia 1:314. 1878.
≡ Nectria dacrymycella (Ny1.) Karst.[ut 'Ny1.'], Fungi Penn. exs. #667. 1867.
≡ Nectriella dacrymycella (Ny1.) Rehm, Ascomyceten #232. 1874.

Type: Finland. Ad caules Urticae in Tavastia (P. A. Karsten).

I have been unable to locate the type specimen of this species; it is not at H. Many specimens deposited as Nectriella dacrymycella including Rehm, Ascomyceten #232 and #232b (BPI, NY, S) and Thumen, Mycotheca Universalis #1064 (NY, NYS) are Nectriella sceptri (≡ Caloneectria sceptri). If the type specimen of N. dacrymycella is identical with N. sceptri, N. dacrymycella will provide an earlier epithet for the species.

Caloneectria dacrymycella (Ny1.) Sacc. f. aconiti (Sacc.) Rehm, Ascomyceten #1868. 1909.

Type: Italy. In caulibus Aconiti Napelli sēcia Leptosphaeria modesta, in alpinis Vette di Feltre, (BIZZOZERO).

The holotype specimen could not be located. Specimens of Rehm, Ascomyceten #1868 were examined (BPI, CUP, FH, NY, PACA, S) and found to be Nectriella sceptri (≡ Caloneectria sceptri). Specimens of this form are similar to Nectriella dacrymycella sensu Rehm (= Nectriella sceptri) but the ascospores tend to be slightly larger. I have found the size of ascospores in specimens of N. sceptri to be variable, ranging continuously from 10-25 μm, thus including C. dacrymycella f. aconiti within the range.
= CALONECTRIA PYROCHROA (Desm.) Sacc., Michelia 1:308. 1878.

Type: Italy. Su foglie sternate di Magnolia grandiflora a Locarno, Daldini.

This is the monotype species of Calonectria. The holotype specimen (RO-general mycological herbarium) was examined and this name is found to be a later synonynm of Calonectria pyrochroa. The scanty, holotype specimen of C. daldiniana and the species C. pyrochroa with its Cylindrocladium anamorph are redescribed and illustrated by Rossman (1979).

Type: Canada. London, on decaying branches, Jan., 1890. J. Dearness No. 1346. Caespitose on ostiole of some Massaria on ash and elm.

The holotype specimen is at NY and reveals this name to be a later synonym of Neectria decora (= Calonectria decora) as first suggested by Weese (1914a). Authentic specimens, collected in February, 1890, were issued as Ellis & Everhart, North Amer. Fungi, second ser. #2548 (BPI, CUP, FH-G, OSC) and Ellis & Everhart, Fungi Columbiana #818 (BPI, CUP, FH-G). All are Nectria decora.

Calonectria decora (Wallr.) Sacc., Michelia 1:310. 1878.
= Calonectria agnina (Rob. ex Desm.) Sacc., Michelia 1:311. 1878.
= Calonectria massariae (Pass.) Sacc., Michelia 1:312. 1878.
= Nectria massariae Pass. in Rabenh., Fungi Europ. #1827. 1874.

Type: Germany. Ad Aceris campestris ramulos languidos Thrg. rariss. no. 4057.

The holotype specimen has not been located. Weese (1914a) stated that the type was unobtainable but that Fuckel, Fungi Rhenani #986 agreed with it! Noone seems to have located or examined the type specimen but Nectria decora is consistently described and illustrated by Fuckel (1870), Weese (1914a), Wollenweber & Reinking (1935) and Pirozynski (1975). I have examined Fuckel, Fungi Rhenani #986 (B, BR, FH-H, UPS) and agree with their concept. Although occurring in the temperate zone, Nectria decora has affinities with the Nectria subfalcata-group as delimited by Samuels (1976a) which at
present, contains only tropical species. The light-yellow ascosporangia are immersed in a white, byssoid stroma parasitic on Massaria. Herbier Barbey-Boissier #865 (BPI, BR, FH-G, NY, S, UPS), also Herbier Fückel #1894-Fungi Rhenani #986, issued as Calonectria decorata is Nectria decorata. Seaver (1909a), Weese (1914a), Wollenweber & Reinking (1935) and Pirozynski (1975) list the numerous synonyms of Nectria decorata but erred in synonymizing Calonectria diminuta with C. decorata (≡ N. decorata). Saccardo (1883) listed C. pyrrochlorella Sacc. nec Auersw., as a synonym of C. massariae (= N. decorata). C. pyrrochlorella Sacc. is a nomen nudem and intentional later homonym of C. pyrrochlorella (Auersw.) Sacc. (= Thyronectria pyrrochlorella). This invalid species is listed as a synonym of Nectria decorata by later authors.

Calonectria decorata f. parasitica Hazsl., Magyarorszag Tarsorszagainak Sphaeriai p. 17. 1892.

Type: A Massaria Popula tomlotokjainak csuscsain no.

The type specimen is not at BP and was apparently destroyed. Pirozynski (1975) considered this form a questionable synonym of Calonectria decorata (≡ Nectria decorata).

≡ Nectria diploa Berk. & Curt. var. diminuta Berk., Grevillea 4:46. 1875.
≡ Dialonectria diminuta (Berk.) Cooke, Grevillea 12:83. 1884.

An isotype specimen at FH-C labelled "Nectria diploa B. & C. (4029) on Alnœ mortus. Nov. 1853. Society Hill, S. C." was examined. This is taken to be type material of Nectria diminuta. N. diminuta belongs in the Nectria episphaeria-group as delimited by Booth (1959). Specimens of Nectria diminuta were issued as N. diploa in Ravenel, Fungi Carol. exs., fasc. III #55 (BPI, NY). Nectria diminuta has been mistakenly synonymized with Calonectria decorata (≡ Nectria decorata). When Seaver (1909a) described Calonectria diminuta, he examined only specimen of C. dearnessii which he considered a questionable synonym of C. diminuta. C. dearnessii is a synonym of Nectria decorata (≡ Calonectria decorata). Based on Seaver's description of C. diminuta, Weese (1914a) with some reservation, Wollenweber & Reinking (1935) and Pirozynski (1975) listed C. diminuta as a synonym of Calonectria decorata (≡ Nectria decorata).

Type: Cuba. On bark. Cuban Fungi #767. (≡ Wright #606).
In the original description Berkeley (1869) listed Wright #606 as the type specimen but also cited "Car. Inf., no. 4029" which later became the type of \(N.\) diploa var. diminuta. These specimens are different species and only Wright #606 from Cuba is considered the type collection of \(N.\) diploa. Isotype specimens at FH-C and NYS were examined; others are housed at K, according to Booth (1971). \(Nectria\) diploa is related to \(N.\) flammae (Tul.) Dingley and \(N.\) auran­ticola Berk. & Br., all having Fusarium anamorphs and occurring on scale insects. Booth (1971) described and illustrated \(N.\) diploa and related species. Petch (1921), Wollenweber & Reinking (1935) and Booth (1971) list many synonyms which I have not confirmed.

Type: Java. Tjibodas, 1908. auf einem faulenden, fast ent­rindeten Holzstücke, coll. Höhnel.

The holotype specimen at FH-H is in poor condition and was not examined microscopically. From the description and macroscopic appearance, this species apparently belongs in the \(Nectria\) mammoidea-group as delimited by Booth (1959).

\(\equiv\) \textit{Calonec\textit{tria macrospora}} Rick, Broteria 5:41. 1906,
\(\neq\) \textit{Calonec\textit{tria macrospora}} Sacc. & Speeg., 1878 \textit{vel} \(C.\) macro­spora (P. Henn. & E. Nym.) Weese, 1910.

Type: Brazil. Rio Grande do Sul, in foliis putridis palmae.

This name was erected to legitimize Rick's species. I have been unable to locate the holotype specimen.

\(\equiv\) \textit{Sphaeria duplicellla} Ny1., Not. Smälsk. Fauna Fl. Finn. Förh. 10:89. 1868.

\(\equiv\) \textit{ABSCONDITELLA DUPLICELLLA} (Ny1.) Rossman, comb. nov.

Type: Finland. In Lapponia orientali extrema, ad Ponoi, supra caespites Jungermanniarum (N. I. Fellman).

The holotype specimen (H) was examined. Isotype slides are deposited at FH-G. This species was found to be ostro­palean and, after consultation with M. A. Sherwood, is placed in Absconditella. Absconditella was erected in 1965 for \(A.\) sphagnorum which, like \(A.\) duplicellla, occurs on bryophytes and is weakly lichenized. Macroscopically similar to \(A.\) sphagnorum (Sherwood, 1977), \(A.\) duplicellla is differentiated by the longer, multisepate ascospores which are 35-50 x 9-10 \(\mu \text{m}, \) 3- to 7-septate. Racovitza (1959) and Döbbeler (1978) included this species as a \textit{Calonec\textit{tria}} without examining the type specimen.
Calonectria eburnea Rehm, Hedwigia 37: 196. 1898.

Type: Brazil. Pedras Grandes, an Baumrinde im Wald. Ule no. 1582c. H. B.

The holotype specimen at B was apparently destroyed. An isotype specimen at FH-H is labelled "Herb. Berlin" and is here designated the LECTOTYPE. An examination of this specimen reveals that C. eburnea is a later synonym of Neotria rigidiuouscula (≡ C. rigidiuouscula) as suggested by Weese (1927) and Wollenweber & Reinking (1935).

The holotype specimen may exist at W but Petrak's specimens are not yet available for study. An isotype specimen (ZT) was examined. This name is found to be a later synonym of Nectria albosuccinea (≡ Calonectria albosuccinea), the type specimen of which was collected in Ecuador. The isotype specimen of C. euradorica lacks a dark base on the ascocarp but this may be due to differences in substrate or state of maturity.

Type: Java. In caulibus Monocotyledonum emortuins in Horto Bogoriensi 2. I. 97 (n. 219).

The holotype specimen (PAD) was examined but few ascocarps are left. A fragmentary isolate specimen at FH-H contained no fungus but the isotype slide (FH-H) was useful. The ascocarp wall structure of C. effugiens is similar to Tubeufia paludosan composed of thin-walled, horizontally-elongated cells. In addition, the ascocarps occur on monocotyle-donous wood and are associated with dematiaceous hyphae and Alternaria and Acrodictys-like conidia. Because the specimen is immature, the minutely-striate ascospores, which measure 45-60 x 4.5-5 μm inside the ascus, are shorter than those of T. paludosan.

An isotype specimen at FH-G "ex Herb. Theissen" is labelled no. 4358. In addition, isotype specimens were issued as "Hyalocrea epityces Syd. n. gen. & n. sp.," C. F. Baker, Fungi Malayana #541 (BPI, CUP, FH-G) having the same collection data as in the original description. Hyalocrea epityces, the monotype species of Hyalocrea, belongs in the Dothideales as suggested by the saccate, bitunicate asci, few asci per ascocarp and lack of pseudoparaphyses. The small, translucent ascocarps have large, triangular hairs around the apex; the broad, elliptical ascospores are three-septate, 38-48 x 16-18 μm.

= NECTRIA OCHROLEUCA (Schw.) Berk., Grevillea 4:16. 1875.
Type: Argentina. Prov. Jujuy, Quinta pr. Laguna de la Brea in caulibus aridis Equiseti, 17/6 1901, No. 86.
The holotype specimen (S) was examined. This name is found to be a later synonym of Nectria ochroleuca which was redescribed and illustrated by Samuels (1976a).

Calonectria erubescens (Rob. ex Desm.) Sacc., Michelia 1:309. 1878.
= NECTRIA ERUBESCENS (Rob. ex Desm.) Phill. & Plowr., Grevillea 10:70. 1881.
= Calonectria crescentiae Seaver & Waterston, Mycologia 32:404. 1940.
Desmazieres, Pl. Crypt. France #1766, issued in 1849, is labelled "en automne, à la face inférieure des vieilles feuilles de Houx tombées à terre" with a reference to the article where Sphaeria erubescens is described. This exsiccati number is taken as the type collection; no other possible type specimens have been located. Isotype specimens have been examined from BPI, BR, IMI, NY and UPS. Samuels (1978) examined the isotype at NY and this specimen is here designated the LECTOTYPE. Nectria erubescens is a member of the N. arenula-group as delimited by Booth (1959) and Samuels (1978). N. erubescens has been redescribed, illustrated and discussed by Samuels (1978) who has cultured and described its Cylindrocarpon anamorph. Due to Ellis & Everhart's (1892) and Seaver's (1909a) mistaken concept of the species, many of the specimens in United States herbaria, identified as Calonectria erubescens are foliar hyperparasites belonging to the Nectria leucorrhodina-group as delimited by Samuels (1976a) or to the pleosporaceous genus Melioliphila.
≡ MELIOPHILA ERYSPHIOIDES (Berl. & Roum.) Rossman, comb. nov.

Type: Philippines. Tonkino, parasitice in subiculo Meliola amphitrichae in foliis adhuc vivis Citri Bigarradieae.

Specimens of Roumeguère, Fungi selecti exs. #4451 labelled "Calonectria erysiphoidea sp. nov. Berl. & Roum." with collection data similar to those in the type description are considered isotypes. Isotype specimens have been examined from BPI, BR, FH-P and NY. This species has yellow-brown ascocarps covered with setae, bitunicate asci and clavate, three-septate ascospores. It is placed in Meliophila, differing from all other species in the genus by the brown pigmentation of the ascocarps and hyphae. Hansford (1946) redescribed this species as a Calonectria.

≡ NECTRIA ERYTHRINA (H. & P. Syd.) Rossman, comb. nov.

The isotype specimens (FH-H, K) contain a hypocreaceous fungus which belongs in the Nectria aquifolii-group as delimited by Booth (1959). Aggregated on a well-developed stroma, the red-orange ascocarps are slightly roughened and deeply cupulate when dry, as are those of Scoleconectria cucurbitula (≡ C. cucurbitula) and Thyronectria balsamae (≡ C. balsamea). The ascospores are ellipsoidal, faintly striate, 1- to 3-septate, 14-18 x 5-6 μm, but do not bud in the ascus.

The holotype specimen could not be located.

Calonectria ferruginea Rehm, Hedwigia 39:225. 1900.
≡ Trichopeltis ferruginea (Rehm) Rehm, Hedwigia 44:1. 1904.

Santesson (1952) selected Ule #602 (S) as the lectotype. I have not seen this specimen but Santesson examined it and concluded that this species is a later synonym of the lichen
Porina limbulata. I have examined some of the isolectotype and paratype specimens: Ule #602 (B), Ule #1754 (B, BPI, FH-G), Ule #2321 (FH-G). Although Ule #1754 (BPI) contains ascocarps of Meliophila balanseana (= Calonectria balanseana) on Meliola, Rehm's description and illustrations suggest that he was describing Porina limbulata which occurs on many of the type specimens. Santesson's synonymy is accepted.

Calonectria fimbriata Seaver & Waterston, Mycologia 32:404. 1940.
Type: Bermuda. On dead stems of Foeniculum vulgare Gaertn.

The holotype specimen at NY was examined. In agreement with Samuels (1976b), this name is found to be a later synonym of Nectria sylvana in the Nectria pennis group as delimited by Booth (1959) and Samuels (1976b). N. sylvana and its Acremonium anamorph were redescribed and illustrated by Samuels (1976b).

Calonectria flavida (Corda) Sacc., Michelia 1:313. 1878.
= Sphaeria flavida Corda, Icon. Fung. 4:40. 1840.
= Nectria flavida (Corda) Fries, Summa Veg. Scand. 2: 388. 1849.
= Lasiosphaeria flavida (Corda) Cooke, Grevillea 12:112. 1884.
Type: Czechoslovakia. Im Frühjahre auf modernden Holzspanen der Erle. Sawist bei Prag. 1838.

Booth (1959) stated that there is no type material of this species in existence and erected Nectria ellisii to accommodate the specimens from Britain identified as C. flavida. He admitted, however, that these specimens do not fit Corda's description. Petch (1938) redescribed Lasioneotria flavida based on several British collections, some of which were examined by Booth and placed in Nectria ellisii, stating that he "accepted Berkeley & Broome's interpretation of Corda's species." I have been unable to locate the holotype specimen.

Type: Russia. In ramis emortuis Tiflis, (Haussknecht).

Saccardo erected this variety based on Rabenhorst's (1871) misidentification of Nectria flavida (Corda) Fries, citing Rabenhorst's description and specimen. The holotype specimen has not been located.

Specimen cited: West Indies. Grenada, on bark of Theobroma cacao.

In listing the specimens examined of *Calonectria rigidiuscula*, Petch inadvertently published Massee's herbarium name. This is a *nomen nudem* as well as a later homonym of *C. flavida* (Corda) Sacc., 1878. Massee's unpublished name has been listed by Weese (1924), Wollenweber & Reinking (1935) and Booth (1971) as a synonym of *C. rigidiuscula*. Indeed, Massee's specimen with this name (NY) is *Nectria rigidiuscula* (≡ *C. rigidiuscula*).

Type: United States. South Carolina, on *Kerria japonica*. Car. Inf. no. 4025.

An isotype specimen (FH-C) was examined. This variety is found to be a later synonym of *Herpotrichia mutabilis*.

Type: United States. Georgia, Tifton, E. radicibus *Prunus persicae* L. *isolatum*.

Isotype specimens at BPI and NY have been examined. This name is considered a synonym of *Calonectria kyotoensis* which has a *Cylindrocladum* anamorph.

The type specimen has not been located. Döbbeler (1978) included this species in *Calonectria* based solely on Racovitza's publication. From the description and illustrations, this species does not seem to belong to *Calonectria* as defined by Rossman (1979).

Calonectria fuckelii (Nits. ex Fuckel) Sacc., *Michelia* 1:310. 1878.

Type: Austria. Auf den Rheinauen, an faulern, aber noch hartem Holz von Populus nigra, sehr selten, im Herbst.

Specimens of Herbier Barbey-Boissier #915 (BPI, FH-G), issued as *Calonectria fuckelii* are labelled Herbier Fuckel
and have collection data identical to those in the type description. These are considered type specimens; the one at FH-G is here designated the LECTOTYPE. *Nectriella fuckelii* has light-yellow ascocarps which are partially immersed in hard, decorticated wood and have a broad, protruding papillae. Surrounding the papillae is a ring of long, hyaline setae. The unitunicate asci are clavate with a distinct apical ring and the ascospores are one-septate, minutely punctate, 17-22 x 5-7 μm. Seaver (1909a) lectotypified the genus *Nectriella* Fuckel with *N. fuckelii*. Other species of *Nectriella* occur on dead herbaceous stems and lichens. *Nectriella* species are related by more than the immersed ascocarps; all have clavate, unitunicate asci each with a distinct apical ring.

Calonectria fuckelii (Sacc.) Rehm in Tranz. & Serebrianikow, Mycotheca Rossica #68. 1910 non *C. fuckelii* (Fuckel) Sacc.
≡ *Nectria fuckelii* Sacc., Michelia 1: 289. 1878.

Type: Germany. Auf dem noch lebenden Thallus und den Apothecien von Hagenia ciliaris, wie es scheint, sehr selten, im Frühling. Im Jura bei Neuchatel (Morthier). *Fungi Rhenani* #1836 (unter *Cryptodiscus tinctus*).

In 1866 Fuckel issued *Fungi Rhenani* #1836 as *Cryptodiscus tinctus* with a species description on the packet label. Later he published the superfluous name *Nectriella coccinea*, citing the same *Fungi Rhenani* #1836 as the type specimen. When transferring *Nectriella coccinea* to *Nectria*, Saccardo (1878) recognized that a new epithet must be given because *coccinea* was preoccupied in *Nectria*. He, therefore, proposed the epithet *fuckelii* to accommodate this species in *Nectria*. Rehm transferred *N. fuckelii* to *Nectriella*; however, this epithet was already preoccupied in *Calonectria*. Because *Cryptodiscus tinctus* provides the earliest epithet and the species is correctly placed in *Nectriella*, the correct name for this fungus is *Nectriella tincta* (≡ *Calonectria tincta*) typified by Fuckel, *Fungi Rhenani* #1836. Weese (1914c) and Keissler (1930) redescribed this species as *Nectriella coccinea*.

Some specimens of Tranzschel & Serebrianikow, Mycotheca rossica fasc. 2, #68 were issued as *Calonectria fuckelii* f. *everniae* (BPI) and others as *C. tincta* (Fuckel) Rehm (CUP). The collection data are identical on both labels except that *C. fuckelii* f. *everniae* is "in thallo *Everniae Prunastri* Ach."
while C. tincta is "in thallo Anaptychiae ciliaris K örb." It is conceivably that Rehm may have recognized, after some of the labels were printed, that C. fuckelii f. everniae was a later name for C. tincta and that the lichen was misidentifed. An isotype specimen (BPI) was examined and this form is found to be a synonym of Nectriella tincta (≡ C. tincta).

≡ Nectria fulvida Ellis & Everh., J. Mycol. 1:140. 1885.
≡ Dialonectria fulvida (Ellis & Everh.) Ellis & Everh., J. Mycol. 2:136. 1886.

Type: United States. New Jersey, Newfield, on bark of decaying oak limb lying on the ground, Oct. 7, 1885.

An isotype specimen (FH-G) reveals this name to be a later synonym of Tuberfug a cerea (≡ Calonectria cerea) as previously suggested by Seaver (1909a), Booth (1964) and Rossman (1977).

Calonectria funicola (Berk. & Br.) Sacc., Michelia 1:312. 1878.
≡ Lasiocentria funicola (Berk. & Br.) Cooke, Grevillea 12:112. 1884.
≡ Calonectria luteofusca (Crouan & Crouan) Sacc., Michelia 1:317. 1878.

The holotype specimen at K was examined and agrees with descriptions of this species by Petch (1938) and Booth (1959). Booth placed Nectricia funicola in the Lasiocentria-group of miscellaneous Nectria species with hairs on the ascocarp.

Calonectria geralensis Rehm, Hedwigia 37:198. 1898.
≡ NECTRIA GERALENSIS (Rehm) Rossman, comb. nov.

Type: Brazil. Ad folia viva Panici. Serra Geral 1/1891. Ule no. 1765. H. B.

Isotype specimens were examined from S and FH-H; the specimen at S containing Rehm's notes is in excellent condition and is here designated the LECTOTYPE. Nectria geralensis belongs to the Nectria arenula-group as delimited by Booth (1959) and Samuels (1978). The superficial, yellow-brown ascocarps occur singly in grass leaves, sometimes surrounded by a thin, hyphal stroma. The clavate asci with
undifferentiated apices contain long, fusiform ascospores which are 9- to 11-septate, 48-63 x 2.5-4 μm. Additional specimens were issued as E. Ule, Mycotheca Brasiliensis #70 (B, BPI, C, CUP, FH-H, NY, PACA, PREM, S).

Calonectria gigaspora Massee, Bull. Misc. Inform. 7:257. 1906.
≡ **NECTRIA MEGASPORA** Rossman, nom. nov.

Type: West Indies. Trinidad, in channel made by the "borer" in sugar-cane, Hart.

Isotype specimens (K, NY) were examined. *Nectria megaspore* is distinctive having some of the largest ascospores in the Hypocreales, 90-160 x 20-25 μm, 3-septate. The solitary, superficial, red-orange asccarps are also large, 1000-1050 μm tall and obpyriform with a broadly-rounded papillae. The asci are apparently evanescent at maturity. The affinities of this species within *Nectria* could not be determined. The epithet of the basionym is preoccupied in *Nectria* by *N. gigaspora* P. Henn.

See *Calonectria macrospora* (P. Henn. & E. Nym.) Weese for an account of this species.

Calonectria graminicola (Berk. & Br.) Wollenw., Phytopathology 3:34. 1913.
≡ *Dialonectria graminicola* (Berk. & Br.) Cooke, Grevillea 12:110. 1884.

Booth (1959) listed this species as incompletely known because the type collections are sparse. He stated that the few remaining ascocarps resemble *Nectria arenula* and that this name is either a synonym of *N. arenula* or a nomen dubium. Krieger, Fungi Saxonici #1424 (CUP), issued as *Nectria graminicola* is *Nectria arenula*. *Calonectria graminicola* was considered by Ihssen (1910) and Wollenweber (1913) to be the perfect state of *Fusarium nivale* (Fries) Ces., a snow mould and cause of a disease of grasses and cereals. The perfect state of *Fusarium nivale* is *Monographella nivalis* (≡*Calonectria nivalis*) as explained by Muller (1977).
Calonectria graminicola var. neglecta Krampe, Angew. Bot. 8: 252. 1926.

Type: Switzerland. In culmo inferiore Tritici vulgaris, legit Appel. coll. O. Krampe, 1924.

The holotype specimen is not in B and could not be located. An 'authentic' specimen, probably the type specimen, is illustrated by Wollenweber (1916). The superficial ascocarps have a prominent apical disk and what appears to be a *Cylindrocarpon* anamorph. The illustration suggests a fungus in the *Nectria mammoidea*-group as delimited by Booth (1959) but without a type specimen this variety cannot be adequately characterized.

Calonectria graminicola Stevens, Bot. Gaz. 45:232. 1918, non *C. graminicola* (Berk. & Br.) Wollenw., 1913.

Calonectria graminicola Stevens is the monotype species of *Melioliphi/a Spec.*., 1924. (See *Calonectria ambigu/a*.) Isotype specimens of Stevens 4663 (CUP, NY) and paratype specimens of Stevens 5269 (BPI, CUP, FH-G, NY) were examined. The isotype at CUP is here designated the LECTOTYPE. This species is found to be a later synonym of *Melioliphi/a volutella* (= *Calonectria volutella*), as is Sydow, Fungi **Venezuelani #260a** (BPI, PREM) issued as *C. graminicola* Stev.

Type: Bermuda. Near Harrington Sound, on dead stems of *Jasminum*.

The holotype specimen (NY) was examined and reveals this species to be a later synonym of *Nectria haematococca*.

Calonectria guaranitica Spec., Anales Soc. Ci. Argent. 19:42. 1885.

= *ALLONECTELLA GUARANITICA* (Spec.) Rossman, comb. nov.

Type: Brazil. Ad folia vi/a *Bambusaeeae cujusdam in ulignosis sylvae* Naranjo, 24 Maj. 1883 (sub num. 3828).

The holotype specimen (LPS) was examined. Isotype specimens were issued in Balansa, Champignons du Paraguay #247 (NY) and Roumeguere, Fungi Selecti exs. #4144 (BPI, NY) as
Broomella guaranitica. This species has dark-red ascocarps aggregated on the carbonous stroma of Phyllachora. The unitunicate asci are clavate, each with an undifferentiated apex, and the ellipsoid ascospores are 28-35 x 8-9 μm, three-septate. This species is similar to Allonecetella rubescens Petrak, 1950, the monotype species of Allonecetella. The type specimen of A. rubescens is not available for study but from Petrak's detailed description Allonecetella seems to be hypocreaceous. Broomella has been reviewed recently and belongs in the Amphisphaeriaceae (Shoemaker & Müller, 1963).

≡ NECTRIA MICROLEUCA Rossman, nom. nov.
= Calonectria leucophaæs Rehm, Hedwigia 37:195. 1898.

Type: Brazil. Ad folia viva v. languida Sapindaceae species in sylvis prope Guarapi, Jul. 1883 (sub num. 3781).

The holotype specimen (LPS) was examined and reveals this species to be an earlier synonym of Nectria bakeri, a species which was redescribed and illustrated by Samuels (1976a). This species occurs on Meliola and belongs in the Nectria leucorrhodina-group as delimited by Samuels (1976a). The epithet of the basionym of N. microleuca is preoccupied in Nectria by N. guarapiensis Speg., 1885. Rehm, Ascomyceten #1379, issued as C. guarapiensis is Nectria leucorrhodina (≡ Calonectria leucorrhodina) (B, BPI, BR, CUP, S). Roumeguère, Fungi selecti exs. #4047, issued as C. guarapiensis, is Meliophila balanseana (≡ Calonectria balanseana) (NY).

Calonectria gyalectoidea Rehm, Hedwigia 37:197. 1898.

Type: Brazil. Oberseite der Blatter einer Sapindaceae. Ule no. 1196 A a. H. B.

The holotype (S) and isotype specimens (FH-G, FH-H) were examined. This name is found to be a later synonym of Meliophila balanseana (≡ C. balanseana). Weese (1914b) suggested the synonymy of C. gyalectoidea with C. balanseana. Rick, Fungi Austro-americana #321 (BPI, FH-G, S) issued as C. gyalectoides [sic] is Nectria leucorrhodina (≡ C. leucorrhodina).

≡ NECTRIA GYMNOSPORANGII (Jaap) Rossman, comb. nov.

The holotype (HBG) and an isotype specimen (CUP-F Otto Jaap, Fungi selecti exs. #750 issued as Fusarium gymnosporangii Jaap) were examined. This species is found to be a Nectria with multisepitate ascospores belonging in the Nectria coccinea-group as delimited by Booth (1959). Weese (1924) suggested that C. gymnosporangii was related to Nectria punicea and N. galligena both in the Nectria coccinea-group. On the holotype specimen there is an associated Cylindrocarpon anamorph which Jaap called Fusarium gymnosporangii. Wollenweber & Reinking (1935) transferred the anamorph to Bactridium.

Type: England. Farnham, Surrey, habitat in foliis ad ramis Hederae helicis, J. S. Murray, 6 Nov. 1958. (Herb. IMI 75300).

The holotype specimen (IMI) was examined. C. hederae is related to C. pyrochroa (= C. daldiniana, the monotype species of Calonectria) (Rossman, 1979), having a Cylindrocladium anamorph. C. hederae is redescribed and illustrated by Terashita (1969), Matsushima (1971) and Pearally (1974c). Booth & Murray (1960) attribute this species to Arnaud (1952) whose name was invalidly published due to the lack of a Latin diagnosis. Booth & Murray did not choose Arnaud's specimen as the type, perhaps because it was unavailable.

Type: France. Cote-d'OR, sur bois denude de Hedera helix, juillet, 1893. (F. Fautrey.)

The holotype specimen is not at PC and has not been located.

Caloneectria helminthicola (Berk. & Br.) Sacc., Michelia 1:315. 1878.

The holotype specimen (K) has been examined. In addition, isotype specimens were issued as Nectria helminthicola, Rabenhorst, Fungi Europ. #47 (BR, FH-H) labelled "Batheaston, ad ramos Ulmi campestris, Jan. 1859 leg. C. E. Broome." Weese (1914d) stated that N. helminthicola belonged in Letendraea but did not make the combination. Petch (1938) was the first author to use the combination Letendrea helminthicola. L. helminthicola (= L. eurotioides, the monotype species of Letendrea Sacc.) has fleshy, white ascocarps, bitunicate asci and pale-brown, one-septate ascospores. This species is related to Tubeufia which generally occurs with dematiaceous fungi on
rotting wood. Müller & von Arx (1962) and Samuels (1973) redescribe, illustrate and list the synonyms of *L. helminthicola*.

≡ *Ophionectria hendrickxii* Hansf., *Sydowia* Beih. 2:122. 1957.

= *Saccardomyces socius* P. Henn., *Hedwigia* 43:353. 1904.

The holotype specimen (IMI) was examined. This species is not hypocreaceous, but belongs in the Sphaeriaceae. There has been some confusion concerning the complex of genera with species which are hyperparasitic or occur directly on living leaves and have small, fleshy ascocarps, uniloculate ascus and elongate ascospores. Rather than adding another unfounded opinion, I have chosen to ignore the recent literature on such genera as *Pseudomeliola*, *Schweinitziella*, *Hyalosphaera* and *Saccardomyces* (Petrak & Sydow, 1936; von Arx, 1958; Pirzynski, 1976). I have studied an isotype specimen (FH-G) of *Saccardomyces socius*, the type species of *Saccardomyces*.

(Type: Peru. Rio Amazonas, Leticia: Auf Blattern von Solanum, mit Dimerium Saccardorum, Asterina etc. Juli 1902. No. 3158.) *Calonectria Hendrickxii* is a later synonym of *Saccardomyces socius*. *Tubefia asclepiadis* was also found to be a later synonym of *S. socius*. The holotype specimen (URM) was examined. (Type: Brazil. In foliis *Aplepidatis curassavicae*, Tamatatirim, Victoriae, Pern., Leg. Oswaldo Soares, 28.8.959, Typus, 19054, IMUR. Hyperparasitans *Paraasterinam laxisulcum* (Syd.) Bat. & Maia et so. in ens cum *Helmintosporio glabraide* F. L. Stevens et *Trichococcinno ugandensi* Bat. & Maia.) Contrary to reports of von Arx (1958) and Pirzynski (1976), the ascocarp walls of *Saccardomyces socius* are not deliquescent at maturity.

Calonectria hibiscicola P. Henn., *Hedwigia* 48:105. 1908.

Type: Paraguay. Hort. botan. Goeldi in corticibus *Hibisci schizopetalii*. Jan. 1908 (Baker n. 216.)

An isotype specimen (FH-G) was examined. Although the asci are eight-spored, *Calonectria hibiscicola* is a later synonym of *Nectria rigidiuscula* (= *Calonectria rigidiuscula*). According to Booth (1971), heterothallic strains of *C. rigidiuscula* may be 2- to 8-spored. As is often the case, *Nectria haematococca* Berk. & Br. occurs with *N. rigidiuscula* on the isotype specimen (FH-G) of *C. hibiscicola*. Weese (1914b, 1924, 1927) remarked on the synonymy of *C. hibiscicola* with *Nectria bulbocephali* P. Henn., *C. meliae*, *C. rigidiuscula* and *C. sulcata*. He examined a type specimen of *C. hibiscicola* at B which apparently no longer exists. The isotype specimen at FH-G is here designated the LECTOTYPE.
Calonectria hippocastani (Otth) Sacc., Hedwigia 35:33. 1896.

Type: Switzerland. Bern, an abgestorbene Zweigen von Aesculus Hippocastanum, im Herbst.

An isotype specimen (FH-G) labelled "Original ex Herb. Otth" was examined. The only fungus present was Nitschkeae cupularis (Pers. ex Fries) Karsten which does not fit Otth's description. Until a suitable type specimen is found, this species cannot be adequately characterized.

The holotype (K) and an isotype specimen (FH-G) were examined. This species is a member of the Clavicipitales, unrelated to Calonectria in the Hypocreales. Like "Calonectria" pruinosa, no suitable genus could be determined for it. The ascocarps are pyriform with smooth, rubbery walls, appearing shiny, composed of small, thin-walled cells, typical of members of the Clavicipitales, and are partially immersed in a byssoid stroma covering the leaf hopper. The asci are unitunicate, each having a cap-like, hemispherical apical thickening when young but the apex appearing only slightly thickened at maturity. The ascospores are hyaline, long-ellipsoid and multisepulate but not filiform and not separating into parts-spores. This species resembles members of Torrubiella, Byssostilbe and Barya but lacks the capitate asc and long, filiform ascospores. Of these genera only Torrubiella is entomogenous. "Calonectria" hirsutellae is considered by Petch (1938) to be the ascigerous state of Hirsutella floccosa Speare.

Calonectria hirta (Bloxam) Sacc., Michelia 1:307. 1878.
≡ Lasionectria hirta (Bloxam) Cooke, Grevillea 12:112. 1884.

Isotype specimens (K) were examined. Occurring on well-rotted bark, the pale-yellow ascocarps are superficial, solitary, covered with hyaline setae and seated on a thin, hyphal subiculum. The unitunicate asci contain long-ellipsoid, multisepulate ascospores. The type specimen of Trichonectria aculeata (≡ Calonectria aculeata), monotype species of Trichonectria, has nothing on it that resembles Kirschstein's species. T. aculeata and T. hirta are similar in description but until a good type specimen of T. aculeata is discovered or the species is neotypified, Trichonectria cannot be characterized.

Type: Yugoslavia. Dalmatians, auf noch lebenden Cladodien und Stengeln von Ruscus aculeatus L., bei Castelnuovo, 27. 4. 1914.

I have examined an isotype specimen (HBG). Santesson (1952) examined another isotype (W) listing it as 'holotype?' The specimen at W is designated the LECTOTYPE. The placement of this species in the lichen genus Porina by Santesson (1952) is accepted.

Type: Brazil. Rio de Janeiro, in pagina inferiore foliorum Psidii sp. prope Petropolin, mense Augusto 1899, legit de Höhnel.

The holotype specimen (S) and an isotype (FH-H) were examined; the latter is in better condition. As Weese (1924) recognized, "Calonectria" rubropunctata is a synonym of C. höhnelii. The dark-red, fleshy ascocarps occur superficially on living leaves, loosely surrounded by hyphae which are encrusted with rose-red granules. The bitunicate asci contain narrowly-clavate, three-septate ascospores. "Calonectria" höhnelii resembles Podonectria gahnia Dingley in having dark-red, thin-walled ascocarps and reddish, granulate hyphae but "C." höhnelii lacks a well-developed stroma and does not occur on scale insects. Although "C." höhnelii is a member of the hypocreoid Pleosporales, none of the genera currently recognized in that group can accommodate this species (Pirozynski, 1976).

Type: Puerto Rico. Rio Piedras, on dead wood. Herbarium Insular Experiment Station (Stevenson & Rosa) No. 6499, June 18, 1917.

The holotype specimen and an apparent isotype, both at BPI, were examined. This name is found to be a synonym of Nectria calami (≡ Calonectria calami).

CALONECTRIA ILICICOLA Boedijn & Reitsma, Reinwardtia 1:58. 1950.

Type: Java. This perfect state developed in cultures of Cylindrocladium illicicola (Hawley), isolated from potato tubers be Boedijn and Reitsma, Bogor, February 1948. Type culture B. R. 9/49 deposited in the collection of the "Central Bureau voor Schimmelcultures," Baarn, Netherlands.
The holotype specimen has not been examined but from the description and Cylindrocladium anamorph, this species seems to be related to Calonectria pyrochroa (= C. daldiniana, the monotype species of Calonectria) (Rossman, 1979).

Calonectria inconspicua Winter, Rev. Mycol. (Paris) 7:207. 1885.
Type: Paraguay. Ad folia viva plantae ignota in Meliola parasitans, leg. Balansa.

An isotype specimen (FH-H) 'ex Herb. Winter (Herb. Berlin)' was examined. The specimen in B apparently no longer exists and the isotype at FH-H is designated the LECTOTYPE. Calonectria inconspicua is a synonym of Nectria microleuca (= Calonectria guarapensis). Sydow, Fungi Venezuelani #239b issued as C. inconspicua (S) is Nectria leucorrhodina (= C. leucorrhodina) while #47 (BPI, S) and #233 (S) are Nectria pipericola P. Henn.

CALONECTRIA INUSIATA Seaver [ut Nectria], Mycologia 20:58. 1929.
Type: Trinidad. Morne Bleu, on a fallen leaf of Micropolis sp., March 13, 1921 (Seaver 3176).

Although published as a species of Nectria, this was an error in printing. The author clearly intended to publish this species as a Calonectria. The published illustrations and type specimen are labelled Calonectria. Seaver (1909a, 1916) placed all multiseptate-spored Nectria species in Calonectria. The holotype specimen (NY) was examined. Calonectria indisustia is related to Calonectria pyrochroa (= C. daldiniana, the monotype species of Calonectria) (Rossman, 1979).

Calonectria intermixta P. Henn., Hedwigia 41:6. 1902.

A fragmentary isotype specimen (FH-H) had no suitable fungus on it. No other type specimen has been located.

Type: Uganda. Entebbe Road, in foliis Jasmini dichotomi, Hansford 3114.

Isotype specimens (BPI, IMI, PREM) were examined. This species is distinctive having translucent, pale-yellow ascocarps, covered with large, deltoid fascicles of hairs, bitunicate asci and clavate, seven-septate ascospores which lack appendages. Although the ascospores are considerably shorter, "Calonectria" jasmini is related to the pleosporaceous "Ophionectria" species on rusts reported by Rossman (1977). At present, a generic disposition for these members of the hypocreoid Pleosporales is unknown.

Type: Java. Tjibodas, in foliis putrescentibus Elettariae, 4. III. 97 (195, 366).

An isotype specimen (PAD) labelled #366 was examined; a fragmentary isotype (FH-H) had no suitable fungus on it. This species has small, subglobose ascocarps immersed in a byssoctd stroma composed of spinulose, dichotomously-branched hyphae which are encrusted with bright-yellow granules. Although resembling some Nectria species, Cryptothecium javanicum is retained in this monotypic genus because of the distinctive hyphae of the stroma. The genus Byssonectria is based on a discomycete (Korf, 1971).

= Nectria pipericola P. Henn., Hedwigia 43:244. 1904.

Type: Costa Rica. Sur le mycélium de Meliola malchotricha Speg. des feuilles de Dichondra repens, à San Francisco de Guadalupe, en décembre (0. Jimenes).

The holotype specimen (FH-P) was examined. This name is found to be a later synonym of Nectria pipericola, a species in the Nectria leucorrhodina-group, which has been redescribed and illustrated by Samuels (1976a).

Calonectria jungermanniarum (Crouan & Crouan) Sacc., Michelia 1:513. 1878.

≡ Lasionectria jungermanniae (Crouan & Crouan) Cooke [ut 'jungermanniae'], Grevillea 12:112. 1884.

Type: France. Finistère, sur le Frullania tamarisci et sur le Lophocolea bidentata. Aut. Pr. r.

The lectotype specimen (CO) was examined. I concur with the placement of this species in Pseudonectria by Döbbeler (1978) who lectotypified, redescribed and illustrated this species.

Type: Uganda. Kampala, in foliis emortuis humidis Musae sapientium, Hansford 1887.
The holotype specimen (K) was examined. This name is found to be a later synonym of *Nectria calami* (= *Calonectria calami*).

Petrak’s specimens (W) are not yet available for examination.

Calonectria kurdica

[≡ Puttemansia lagerheimii (Pat.) Höhnel, Ann. Mycol. 17:120. 1919, nom. prov.]

Type: Ecuador. Feuilles d'une bambusee "moya". San Jorge Juillet.

The holotype specimen (FH-P) has not been examined. This species is described and illustrated by Müller & von Arx (1962) and is retained in the monotypic genus, Allonecete H. Syd. Occurring on living leaves, the red-brown ascocarps are covered with long, white hairs and have a basal foot immersed in the leaf, as do some species of Puttemansia whose ascocarps are white to pale-yellow. Species of both genera have bitunicate asci and fleshy ascocarps and are related to Letendraea and Tubeufia in the hypocreoid Pleosporales. Species of Puttemansia and Tubeufia have elongate, clavate ascospores while those of Letendraea and Allonecete have ellipsoid, uniseptate ascospores.

Calonectria lanosa (P. Henn.) Weese, Mycol. Centralbl. 4:187. 1914.

≡ PUTTEMANSIA LANOSA P. Henn., Hedwigia 41:112. 1902.

Isotype specimens (BPI, CUP, FH-H) and an authentic specimen collected '19. 8. 05' (BPI) were examined. The holotype specimen at B apparently no longer exists; the isotype at BPI is here designated the LECTOTYPE. This species is the monotype of Puttemansia. The fleshy, pale-yellow ascocarps are densely covered with hairs and are attached to the substrate of living leaves by a basal foot. The bitunicate asci contain clavate, multiseptate ascospores. Tetracladium conidia are often associated with the ascocarps suggesting a relationship with Podonecete, another member of the hypocreoid Pleosporales (Pirozynski, 1976; Rossman, 1978).

Calonectria leightonii (Berk.) Sacc., Michelia 1:309. 1878.

Type: Cuba (641.) On dead trees. June.

In the original publication, Berkeley listed the type specimen of Nectria leightonii as Cuban Fungi #777. He then cited specimens from Europe after the Cuban specimen, noting that "Mr. Leighton's specimens are from Yorkshire, on Larch." Cooke (1873) revised the list of specimens, placing the British specimens first. The Cuban specimen and those from Europe are different and, as Petch (1936) pointed out, only the Cuban collection is considered type material. The holotype (K) and isotype specimens (FH-C, FH-H) were examined. As Seaver (1910)
and Petch (1936) have suggested, this species is a discomycete, probably belonging to the genus *Calycella* (B. Spooner, pers. comm.).

Type: Brazil. Oberseite der Blätter einer Cordia. Ule no. 924. H. B.

An isotype (FH-H) and two authentic specimens (BPI, FH-H) were examined. This name is found to be a synonym of *Nectria microleuca* (≡ *Calonectria guarapiensis*) in the *Nectria leucorrhodina*-group as delimited by Samuels (1976a).

≡ *Nectria sensitiva* Rehm, Hedwigia 39:222. 1900.

Type: Cuba. On a leaf, Sagra.

Samuels (1976a) examined the holotype specimen (PC) leaving his notes at NY, which were reviewed. He has redescribed, illustrated and listed the synonyms of *Nectria leucorrhodina*. This species forms the basis of the *N. leucorrhodina*-group as delimited by Samuels (1976a), all the species of which occur on Meliola. Synonyms, additional to those listed above, are given by Samuels (1976a).

≡ *NECTRIA PIPERICOLA* P. Henn., Hedwigia 43:244. 1904.

Type: Brazil. Ad folia viva Aurantiaceae cujusdam prope Guarapi, Jul. 1883 (sub num. 3781).

The holotype specimen (LPS) was examined. Isotypes were issued as Roumeguère, Fungi selecti exs. #4142 (BPI, NY). This name is a synonym of *Nectria pipericola* in the *N. leucorrhodina*-group. *N. pipericola* was redescribed and illustrated by Samuels (1976a).

Calonectria Levieuxii (Fries) Sacc., Michelia 1:313. 1878.
≡ *Sphaeria levieuxii* Fries, Elenchus fungorum 2:84. 1828.
≡ *NECTRIA LEVIEUXII* (Fries) Crouan & Crouan, Florule du Finistère p. 37. 1867.

Fries (1828) listed this species as "Sphaeria penisa var. levieux! in litt." A specimen from UPS labelled Sphaeria levieuxii collected in France by Mougeot is considered the holotype. The scarlet, scurfy ascocarps are crowded on a well-developed stroma and become deeply cupulate when dry. The unitunicate, cylindrical asci contain ellipsoid, unisepitate ascospores which are 13-15 x 4-5 μm. Nectria levieuxii belongs to the Nectria coccinea-group as delimited by Booth (1959).

Calonectria lichenicola (Ces.) Rehm, Ascom. Lojk. p. 44. 1882.
≡ Pronectria lichenicola (Ces.) Clements & Shear, Genera of Fungi p. 282. 1931.

Type: Italy. Circa lacusculum montanum di Bertignana alterumque paullo distantem di Viverone ad limites austro-occidisionis Bugellensis (Pedemont.) Oct.-Nov. 1856.

I have not seen any of the type specimens of Cryptodiscus lichenicola. Many authors (Winter, 1872; Rehm, 1881; Vouaux, 1912; Weese, 1914c; Keissler, 1930; Muller & von Arx, 1962) have recognized the synonymy of C. lichenicola with Nectria robergei.

Type: Argentina. In thallo licheninio quodam ad cortices languidos Apiahy, Jul. 1881 (sine n.).

The holotype specimen (LPS) has white Tubercularia-like sporodochia which are erumpent through lichens on bark. There are no ascocarps present; this species cannot be adequately characterized.

Type: Philippines. Palawan, Brooks Point (Addison Peak), parasitic on the mycelium of an old Meliola on the leaves of Acalypha stipulacea Klotz., February, 1911, no. 12656.

Isotype specimens were located at BPI, FH-G and IMI. The holotype specimen at B has apparently been destroyed; the isotype at FH-G is here designated the LECTOTYPE. This name is found to be a later synonym of Nectria leucorrhodina (≡ Calonectria leucorrhodina). Hansford (1946) placed Calonectria
limpid close to C. cephalospori, another synonym of Nectria leuconrhodina.

 = MELIOLIPHILA LONGISTOSA (Hansf.) Rossman, comb. nov.

Type: Uganda. In plaguliis Meliolae chorleyi in foliis Trichiliae, Hansford no. 2456 (typus); in plaguliis M. spec., in foliis Jaundaeae monticola, Kawanda Uganda, Hansford no. 2841.

Authentic specimens from Uganda (IMI: Hansford 2999, 3331; PREM: Hansford 3331) were examined; no other type collections were located. This species belongs in Meliophila, having bitunicate asci and fleshy, pale-yellow ascocarps occurring on Meliola. Although close to M. volutella (= Calonecctria volutella), the longer ascospores and dense covering of long, flexuous hairs on the ascocarps of M. longisetosa make this species distinctive.

Calonecctria luteofusca (Crouan & Crouan) Sacc., Michelia 1:317. 1878.

Type: France. Sur une corde pourrie, sur la terre, dans un verger. Hiv. Pr. r. r.

The holotype specimen (CO) was examined. This name is found to be a later synonym of Nectria funicola (= Calonecctria funicola), a species which was redescribed and illustrated by Booth (1959).

Calonecctria luteola (Rob. ex Desm.) Sacc., Michelia 1:315. 1878.

Type: France. In foliis siccis arborum. Aestate.

The type collection was issued in 1850 without a description as Desmazieres, Pl. Crypt. France #2078. Despite the eventually emergent ascocarps, isotype specimens (BPI, FH-C, H, NY) show this species to be allied with Nectriella. The smooth, subglobose ascocarps become collabent when dry. The narrowly-clavate asci have a distinct apical ring and the ascospores are ellipsoid, uniseptate, 11-14 x 3-4 µm.

Type: Italy. In cortice emortuo Vitis viniferae a Conegliana, Aut. 1876 (Spegazzini).
This species was described in Saccardo's (1878a) article on Fungi Veneti Series VIII, covering new and critical species in the exsiccati centuries VIII-XIII. The type collection may be Saccardo, Mycotheca Veneta #1275 whose collection data agree with those in the type description except that the exsiccati was collected in Jan. 1878 while the type was said to be collected in "Aut. 1876." The exsiccati specimens are at least authentic and were examined from BPI, BR, FH-H, LPS and NY. Two specimens in FH-H marked "Original" and "Original, ex Herb. Saccardo" are probably type specimens but the labels are insufficient to determine whether either could be part of the holotype collection. These specimens are all identical with the type of Massarina viburnicola (= Calonectria viburnicola).

≡ Calonectria tarvisina (Speg.) Speg. ex Sacc. (ut 'Speg.'), Syll. Fung. 2:540. 1883.

See Calonectria tarvisina.

Type: Brazil. Rio Grande do Sul, in foliis putridis palmae. Saccardo & Trotter (1913) legitimized Rick's species by renaming it. I have been unable to locate the type specimen.

≡ NECTRIA JACTATA Rossman, nom. nov. [Etymology: Latin, jactatus, meaning tossed around.]

Isotype specimens of N. macrospora P. Henn. & E. Nym. were examined from FH-H and S; the latter is here designated the LECTOTYPE. This distinctive species is related to N. pseudopeziza (= Calonectria pseudopeziza) in ascocarp wall structure; however, N. jactata has one-septate, punctate ascospores, 30-38 x 11-17 μm.
Calonectria mangiferae Sechet, Fruits d'outre mer 8:270. 1953, nom. nud.]

Type: Madagascar. Tananarive, a 1300 m, on Mangifera indica.

The type description lacks a Latin diagnosis and is, therefore, not validly published. No specimen under this name has been located.

Calonectria massariae (Pass.) Sacc., Michelia 1:312. 1878.
≡ Nectria massariae Pass. in Rabenh., Fungi Europ. #1827. 1874.

Isotype specimens of this exsiccati number were examined (BPI, BR, FH-H, S). This name is found to be a later synonym of N. decoro (≡ Calonectria decoro) as stated by Weese (1914a), Wollenweber & Reinking (1935) and Pirozynski (1975).

Type: Java. Buitenzorg, an einem absterbenden Stamme von Melia arguta.

The type specimen has apparently been destroyed; it is not at B. Hohnel & Weese (1911) and Weese (1914b, 1924) suggested that Calonectria meliae is a synonym of C. sulcata (≡ N. rigidiuscula) and later (Weese, 1927) of C. rigidiuscula (≡ N. rigidiuscula) as do Wollenweber & Reinking (1935) and Booth (1971). Based on these previous decisions and the type description, I accept C. meliae as a synonym of Nectria rigidiuscula (≡ Calonectria rigidiuscula).

The holotype (K) and authentic specimens (BPI: Hansford 2866, 2874, 3065, 3470; PREM: Hansford 3304) reveal this name to be a synonym of Melioliphila balanseana (≡ Calonectria balanseana).

Type: Brazil. Ad folia viva Myrtaceae cujusdam in sylvis prope Guarapí, Jun. 1881 (sub num. 2744).

Isotype specimens of Balansa, Pl. du Paraguay #2744 were examined at FH-H, FH-P and NY. Roumeguère, Fungi selecti exs. #4141 (BPI) has the same collection data as those cited in the type description. The specimen sent as type from LPS was collected "XI--1883. No. 1674. Leg. Balansa, nro. 4017" and is considered authentic. This species belongs in Meliophila having bitunicate asci, fleshy, pale-yellow ascocarps covered with long, flexuous hyphae and clavate, three-septate ascospores. Weese (1914b, 1927) stated that Calonectria trichila and C. sorocca (both = Meliophila volutella) and C. erysipheides (≡ M. erysipheides) are synonyms of C. meliolooides (≡ M. meliolooides) and that on the basis of ascocarp wall structure these species resemble C. balansea (≡ M. balansea) and C. appendiculata (≡ M. appendiculata). These species, all now placed in Meliophila, are separated on differences in ascocarp ornamentation.

Rehm (1898) divided Calonectria meliolooides into two forms: macrospora and microspora. The typical form must be macrospora because the type specimen of form macrospora seems to be the same as that of C. meliolooides. Although both are listed as #2744, the year is listed as "1889" in Rehm's type citation of form macrospora and "1881" in Speciezzini's publication of C. meliolooides.

Calonectria meliolooides Spec. f. microspora Rehm, Hedwigia 37:196. 1898.

Type: Brazil. Feuilles. Guarapi. 7/1883. Balansa pl. du Paraguay no. 3796. H. B.

An isotype specimen (FH-H) shows this form to be a synonym of Meliophila balansea (≡ C. balansea) having smooth ascocarps and shorter ascospores than M. meliolooides (≡ C. meliolooides).

≡ Ophionectria mellina (Durieu & Mont.) Sacc. [ut ' (Mont.) Sacc.'], Michelia 1: 323. 1878.
≡ NECTRIA PSEUDOPEZIZA (Desm.) Ross. , Mycotaxon 8: 536. 1979.

Type: Algeria. In ramulo dejecto ad Mustapha prope Alger a Durieu inventa.

The holotype specimen (PC) was examined. This name is found to be a later synonym of Nectria pseudopeziza (≡ Calonectria pseudopeziza). Weese (1914b) suggested that C. mellina was a synonym of C. plowrightiana which I place in synonymy with N. pseudopeziza.

Petrak's specimens (W) are not yet available for study.

≡ NECTRIA MINISCULA (Sacc. & Speg.) Rossman,

Type: Italy. In foliis subputrescentibus Cryptomeriae japonicae a Susegana. Martio 1877. (Spegazzini).

An isotype specimen (LPS) was examined. Another fragmentary isotype specimen (FH-H) no longer contains any suitable fungus. Nectria miniscula is a member of the Nectria arenula-group as delimited by Samuels (1978), close to N. erubescens (≡ Calonectria erubescens). Unlike N. erubescens, ascocarps of N. miniscula have a distinct corona of cells surrounding the ostiole.

The holotype specimen has not been located.

Type: Czechoslovakia. Moravia. Auf faulenden, feucht liegenden Ästen von Robinia pseudoacacia; Mahr-Weisskirchen, Bahndamm bei Teplitz, IV. 1912.

Petrak's specimens (W) are not yet available for study.

Type: Russia. Kazakhstan-Ukraine, in jugo Zilijskij-Alatau, on Plagiiothecium pulchellum (Hedw.) Br., in saxosis prope lac. Issyk, sparse, 4. IX 1943, leg. A. S. Lasarenko.

The holotype specimen has not been located. Racovitza (1959) stated that this species is related to Calonectria duplicella (= Absconditella duplicella), a member of the Ostropales. The type description and geographical distribution suggest that C. muscicola may also belong in Absconditella. Döbbeler (1978) included C. muscicola in Calonectria without examining the type specimen.

Calonectria muscivorata (Berk. & Br.) Sacc., Michelia 1:315. 1878.

Type: England. King's Cliffe, on mosses upon the mud tops of walls in winter.

The holotype (K) and an isotype specimen (PC) were examined only macroscopically. Samuels (1976a) and Döbbeler (1978) have redescribed, illustrated, discussed and listed the synonyms of Nectria muscivorata.

≡ Criphosphaeria nivalis (Schaffnitt) Muller & von Arx, Phytopath. 24:356. 1955.

Type: None designated.

No specimen that Schaffnitt examined has been located; however, mycologists have come to an agreement on the concept of this species. Muller (1977) discussed the confusion surrounding the generic placement of Monographella nivalis and listed the numerous synonyms. This fungus is known as a snow mould causing a disease of cereals. Until recently thought to be a member of the Hypocreales, M. nivalis is quite unlike Nectria or Gibberella species having Fusarium anamorphs. Likewise, Booth (1971) considered the Fusarium state of M. nivalis to be distinct within Fusarium. Monographella is now placed in the Physosporellaceae, Phyllachorales by Barr (1976).

≡ NECTRIA NOVAE-ZEALANDICA (Dingley) Rossman, comb. nov.

The holotype specimen (PDD) was examined. *Nectria novae-zealandica* belongs to the *Nectria aquifolii*-group as delimited by Booth (1959), particularly related to *Thyronectria pseudotrichia* (Schw.) Seeler, *Nectria canadensis* (≡ *Calonectria canadensis*) and *Nectria aurigera* (≡ *C. aurigera*).

≡ *Trichopeltis obtecta* (Rehm) Rehm, Hedwigia 44:1. 1904.
≡ *PORINA EPYPHYLLA* (Fee) Fee, Essai Crypt. Suppl. p. 76. 1837.

Type: Brazil. Folium Corymbidis. Ule no. 868b.--Folium filicis. Ule no. 863a.--Folium Myrtaceae. Tubarao. Ule no. 1400a.--Folia Lindsayae. Itajahy. Ule no. 622 (stroma 1 mm).
--Folia Liriosomatidis. Ule no. 950b.--Folia Calatheatheae. Ule no. 950b. H. Bresl.

Syntype specimens were examined (FH-G: Ule #1400, #622, #863 as 'obtusa'). Ule #622 at FH-G is here designated the LECTOTYPE. Santesson (1952) suggested that all the specimens in the herbarium at Breslau were destroyed. He did not see any type material of *Calonectria obtecta* but examined Rehm, Ascomyceten #1671 (S) issued as *Cryptopeltis obtecta* and agreed with Weese (1924) who synonymized *C. obtecta* with *Porina epiphylla*. After examination of the type specimens at FH-G, I agree with this evaluation.

Calonectria obvoluta (Karst.) Sacc., Michelia 1:316. 1878.
≡ *NECTRIELLA OBVOLUTA* (Karst.) Rossman, comb. nov.

Type: Finland. Supra folia Calamagrostidis arida mense Octobri prope Mustiala reperta.

The holotype specimen (H) was examined. It is in poor condition but was found to be a *Nectriella*. The pale-yellow asccarps are immersed initially, becoming superficial at maturity. The clavate asci have an apical ring and the ascospores are fusiform, uniseptate, 8-10 x 1.5-2 μm.

Type: England. Rockingham Forest, on elm branches.

The holotype (K), isotype slides (IMI) and authentic specimen (H, ex Herb. Plowright; UPS, ex Herb. Broome) were examined. This name is found to be a later synonym of *Nectria pseudopeziza* (≡ *Calonectria pseudopeziza*).

Type: Germany. An stark vermorschem Fagus-Holz. Sauер­brunnleiten bei Rekawinkel im Wienerwalde, August 1906.

Only a label without the holotype specimen can be found at FH-H. No type specimen has been located.

Type: Ceylon. On a decaying stem, Peradeniya, June, 1919; No. 6009 in Herb. Peradeniya.

A portion of the type specimen was examined (K). This name is found to be a synonym of Nectria calami (= Calonec­tria calami), as recognized by Weese (1927) and Petch (1950).

Calonectria opalina (Crouan & Crouan) Sacc., Michelia 1:311. 1878.

Type: France. Finistère, sur les tiges mortes et submergées de Cirsium palustre. Pr. r.

The holotype specimen (CO) was examined. This species belongs in Nectria and has white, partially immersed asco­carps, unitunicate asci and fusiform, multisepate ascospores.

Calonectria otagensis (Currey ex Lindsay) Sacc., Michelia 1: 308. 1878.

The holotype (E) and an authentic specimen (E) were ex­amined. This species belongs in Nectria and has globose, pale-yellow ascocarps on a well-developed stroma, unitunicate asci and ellipsoid, uniseptate ascospores, 12-23 x 4-7 µm. Dingley (1951) redescribed, illustrated and discussed Nectria otagensis. Wollenweber & Reinking (1935), followed by Booth (1971), were incorrect in stating that Calonectria otagensis is a synonym of Gibberella baccata (Wallr.) Sacc.

Calonectria oudemansii (Westend.) Sacc., Michelia 1:308. 1878.

= NECTRIA OCHROLEUCA (Schw.) Berk., Grevillea 4:16. 1875.

Two isotype specimens at BR and one at B were examined. The isotype at BR with Westendorp's notes is here designated the LECTOTYPE. *Nectria oudemansii* is a later synonym of *Nectria ochroleuca*, a species which was redescribed and illustrated by Samuels (1976a).

Calonectria pachythrix Rehm, Ann. Mycol. 5:531. 1907.

≡ **TUBEUFIA PACHYTHRIX** (Rehm) Rossman, comb. nov.

Isotype specimens (FH-G, S) were examined. The specimen at S is here designated the LECTOTYPE. This species is a *Tubeufia* associated with old pyrenomycetes and dematiaceous hyphae on well-rotted wood. The pale-yellow ascocarps are covered with long, tapering hairs. The ascii are bitunicate and the ascospores are long-fusiform, multisepitate, 40-57 x 4-5 µm. *Tubeufia pachythrix* is similar in ascocarp structure to *T. paludosa* (Crouan & Crouan) Rossm. (= *T. javanica* Penz. & Sacc., the type species of *Tubeufia*) but unlike the common temperate species, *T. cerea* (= *Calonectria cerea*) and *T. helicom* (Phil. & Plowr.) Piroz.

Type: Denmark. Ad paleas *Dactylidis glomeratae*. S. Gelsskov, Marts 1912.

The holotype specimen is not at C or CP and has not been located.

The holotype specimen (PAD) was examined. This species belongs in the Physosporellaceae, Phyllachorales as reviewed by Barr (1976). The small, dark-brown, fleshy ascocarps are immersed but eventually become superficial with only the base of the ascocarp embedded in the substrate. The unitunicate asci are broadly clavate, each with a refractive apical ring and the ascospores are ellipsoid, with broadly-rounded ends, equally one-septate, 17-19 x 5-6 µm. An *Arthrinium*-like fungus is associated with the ascocarps as in *Apispora montagnei* Sacc. However, *A. montagnei* has ascocarps which are surrounded by a well-developed clypeus and the ascospores are unequally one-septate. The solitary ascocarps and medially septate ascospores of "*Calonectria*" *perpusilla* suggest *Monographella* Petrak whose type species, *M. divergens* Petrak (= *M. nivalis*, = *Calonectria nivalis*) has a *Fusarium* anamorph. The generic placement of "*Calonectria*" *perpusilla* could not be determined.

The holotype specimen of this recently described species has not been examined. This species was placed in *Calonectria* solely on the basis of the multiseptate ascospores. From the description and illustration it appears to be unlike *Calonectria pyrochora* (= *C. dal diniana*, the monotype species of *Calonectria*) (Rossman, 1979), and should be placed with allied species in the genus *Nectria*.

Calonectria pithecoctenii Verissimo d'Almeida & Souza da Camara, Revista Agron. (Lisbon) 3:254. 1905.

Type: Portugal. In ramulis emortuis *Pithecoctenii Squali* DC., in horto botanico Coimbra, leg. A. Moller, octobri, 1904.

COI has not responded to inquiries concerning the type specimen which has not been located.

Calonectria platasca (Berk.) Sacc., Michelia 1:308. 1878.

≡ *Sphaeria platasca* Berk. in W. J. Hooker, The English Flora 5:263. 1836.

Petch (1936) stated that the type specimen of this species is exhausted. Its identity remains in obscurity.

Calonectria plowrightiana Sacc., Michelia 1:307. 1878.

The type collection of this species was issued as Plowright, Sphaeriacei Britannici cent. III, #15. Isotype specimens (FH-H, H, NY) were examined. This name is found to be a later synonym of *Nectria pseudopeziza* (= *Calonectria pseudopeziza*). Weese (1914b), Petch (1938) and Dingley (1952) suggested that *C. plowrightiana* is a synonym of *C. ochraceopallica* which I place in synonymy with *Nectria pseudopeziza*.
Calonectria polythalama (Berk.) Sacc., Michelia 1:308. 1878.
≡ Nectria polythalama Berk. in J. D. Hooker, Flora of New Zealand 2:203. 1855.
≡ Scoleconectria polythalama (Berk.) Seaver, Mycologia 1:200. 1909.
≡ THYRONECTRIA PSEUDOTRICHA (Schw.) Seeler, J. Arnold Arbor. 21:438. 1940.

Type: New Zealand. On dead bark, Bay of Islands, J. D. H.

The holotype specimen (K) was examined. In agreement with Dingley (1952), I find this name to be a later synonym of Thyronectria pseudotrichia. Scoleconectria polythalama sensu Seaver is Nectria aurigera (= Calonectria aurigera), a name which had previously been thought to be a synonym of S. polythalama (Seaver, 1909a). Ravenel, Fungi Carolinensis fasc. 3, #54 (BPI, BR, FH-H), issued as Nectria polythalama, is Nectria aurigera (= Calonectria aurigera).

Type: Ceylon. Nuwara Eliya, on a leafhopper on bamboo (Arundinaria debilis), etc.

An isotype specimen (K) was examined. Like "Calonectria" hirsutellae, "Calonectria" pruinosa belongs in the Clavicipitales; however, no suitable genus for it could be determined. The pale-yellow, conical ascocarps are composed of small, thin-walled cells forming textura angularis and are partially embedded in a byssoid stroma which completely covers the insect. The asci are cylindrical, each with a capitate apex when immature, but having a narrow canal through the slightly-thickened apex at maturity. Unlike most members of the Clavicipitales, the ascospores are not filiform, but fusiform, 7- to 9-septate, 20-26 x 3-5 μm. Petch (1931) described the conidial state as Hirsutella versicolor. "Calonectria" pruinosa and "Calonectria" hirsutellae are related to species of Byssostilbe, Barya and Torrubiella, all of which are characterized by filiform ascospores which may or may not separate into part-spores inside the ascus. Of these genera only Torrubiella is entomogenous.

≡ NECTRIA PSEUDOPEZIZA (Desm.) Rossman, comb. nov.
≡ Calonectria salicis P. Larsen ex Munk, Dansk Bot. Ark. 17:55. 1957, nom. nud.]
Type: France. L'un est sur bois dénudé, un autre sur l'écorce d'un rameau que nous croyons appartenir au Cytisus Laburnum, et la troisième, enfin, sur l'Arundo Donax... recoltés dans les environs de Caen. M. Roberge.

The holotype specimen (PC) was examined. Occurring solitary to gregarious without a basal stroma, the pale-yellow ascocarps of Nectria pseudopeziza are globose, often flattened apically, and have a concolorous apical disc with a small, pointed papillae. In cross section, the ascocarp wall is 40-80 μm thick, divided into three regions with a dense middle layer which is composed of thick-walled cells. The ascocarp wall remains after the centrum disintegrates, leaving an empty outer shell. The narrowly-clavate asci are unitunicate and the ascospores are long-ellipsoid, 5- to 7-septate, 35-60 x 4-7 μm.

Calonectria pulchella (Starb.) Weese, Z. Garungsphysiol. 4: 230. 1914.
≡ Chaetothyrium pulchellum (Starb.) Theissen, Ann. Mycol. 11: 496. 1913.

An isotype specimen (FH-G) was examined. Malmeomyces pulchellus, the monotype species of Malmeomyces, is similar to species of Nectria, particularly those in the Nectria peziza-group as delimited by Samuels (1976a). The ascocarps are ochraceous, becoming collabent when dry, with four to eight, conspicuous, black setae forming a ring around the ascocarp apex. The unitunicate asci are clavate, each with an undifferentiated apex and the ascospores are one-septate, striate, 15-19 x 3-4 μm. The black setae on the ascocarps are the basis for retaining Malmeomyces pulchellus in its own genus; however, Malmeomyces is closely related to Nectria. Theissen (1913) considered Malmeomyces a synonym of Chaetothyrium.

Calonectria pulcherrima (Berk. & Br.) Sacc., Michelia 1:315. 1878.

Type: Ceylon. On bark. (no. 1102).

The holotype (K) and an isotype specimen (UPS) were examined. Nectria pulcherrima has solitary, scarlet ascocarps which are lightly scurfy. The walls of the ascocarps are composed of thick-walled cells forming textura globulosa. The unitunicate asci are narrowly clavate and the unisepate ascospores are coarsely striate, ellipsoid with slight apiculus as each end, 22-24 x 8-10 μm.
Calonectria pyrochroa (Desm.) Sacc., *Michelia* 1:308. 1878.

≡ *Nectria pyrochroa* Desm., Pl. Crypt. France ed. 2 (2) #372. 1856.

Type: France. In foliis emortuis Platani. Autumno. (Desm.)

The lectotype (PC) and isolectotype specimens (BPI, BR, UPS) were examined. *Calonectria pyrochroa* is an earlier name for *Calonectria daldiniana*, the monotype species of *Calonectria*. The genus *Calonectria* is restricted to species having an ascocarp wall structure similar to *C. pyrochroa* and a *Cylindrocladium* anamorph. *C. pyrochroa* and its anamorph have been redescribed and illustrated by Rossman (1979). Thumen, *Fungi Austriaci* exs. #172 (BPI), issued as *Nectria pyrochroa*, is *Calonectria pyrochroa*.

Calonectria pyrophilora (Auersw.) Sacc., *Michelia* 1:251. 1878.

≡ *Nectria pyrophilora* Auersw. in Rabenh., *Fungi Europ.* #1234. 1869.

≡ *Pleonectria pyrophilora* (Auersw.) Winter, Rabenhorst's Kryptogamen-Fl. Bd. 1, Abt. 2:108. 1887.

Type: Germany. Arnstadiæ, in Aceris campestris ramulis siccis leg. Fleischhack.

I have examined isotype specimens (BPI, CUP, FH-H). Seeler (1940) examined an isotype at FH which he listed as "type". Based on the muriform ascospores, this species belongs in *Thyronectria*; however, it is clearly related to species in the *Nectria aquifolii*-group as delimited by Booth (1959). Seeler (1940) redescribed and illustrated *Thyronectria pyrophilora*.

[Calonectria pyrophilora Sacc., *Syll. Fung.* 2:546. 1883, nom. nud.]

Type: None designated.

Saccardo (1883) listed *Calonectria pyrophilora* Sacc. neo Auersw., as a synonym of *C. massariae* (= *Nectria decora*, = *C. decora*). *C. pyrophilora* Sacc. is a nomen nudem and an intentional later homonym of *C. pyrophilora* (Auersw.) Sacc. (= *Thyronectria pyrophilora*). This invalid species is listed as a synonym of *Nectria decora* (= *C. decora*) by Wollenweber & Reinking (1935), Booth (1971) and Pirozynski (1975).

Type: Brazil. Isolated from leaf spots of sugar-apple (*Annona squamosa* L.) and seedlings of eucalyptus (*Eucalyptus* sp.).

Dried isotype specimens of isolates from both hosts are housed at NY. This species is the teleomorph of *Cylindrocladium*...
Calonectria quinqueseptata Boedijn & Reitsma. The ascocarps are similar in structure to those of *Calonectria pyrochroa* (= *C. daldiniana*, the monotype species of *Calonectria*) (Rossman, 1979). *Calonectria quinqueseptata* is correctly placed in *Calonectria sensu stricto.*

The holotype specimen (B) had nothing on it resembling the described fungus. A specimen from S labelled *Calonectria* n. sp. has an illegible epithet written and signed by Kirschstein. The collection data on this specimen fit those published for the type specimen of *C. rehmiana*. This specimen has only a few ascocarps left. The ascocarps are dark-red on a well-developed stroma, suggesting the *Nectria aquifolii*-group as delimited by Booth (1959). The narrowly-clavate asci are unitunicate and the ascospores are fusiform with rounded ends, three-septate, 24-27 x 6-7 µm. Without a better specimen this species cannot be adequately characterized. Wollenweber's drawing (1916) of the type specimen shows an associated *Fusarium*-like anamorph. Höhnel (1912) and Wollenweber & Reinking (1935), followed by Booth (1971), stated that this species is a synonym of *Gibberella pulicaris* (Fries) Sacc.

Type: Viet Nam. Smithia bequaertii, collet et pivot. Sud-Annam (Province du Haut-Donnai, Blao); novembre 1936.

The holotype specimen is not at PC. Booth (1966) obtained the type culture which he lists "ex Herb. Paris, IMI 55922." Booth redescribed and illustrated this species suggesting that *Cylindrocarpon reteaudii*, the anamorph of *Neonectria reteaudii*, is simply a *Cylindrocladium* without a terminal vesicle. Likewise, the teleomorph appears similar to species of *Calonectria* having *Cylindrocladium* anamorphs (Rossman, 1979) and is correctly placed in *Calonectria*.

Calonectria richonii Sacc. [ut 'richonii'], Syll. Fung. 2:542. 1883.

≡ *Nectria mellina* Richon ex Sacc., Syll. Fung. 2:542. 1883, nom. nud. pro syn.]

Type: France. In ramis siccis Salicis Capraeae, Saint-Amand.
Saccardo (1883) erected Calonectria richonii based on a specimen which Richon (1881) identified and reported as Nectria mellina (≡ Calonectria mellina). Because the asci and ascospores were smaller than those described for N. mellina, Saccardo thought Richon's specimen a different species for which he proposed a new name. Inadvertently, Saccardo also introduced the invalid, later homonym attributing it to Richon. I have examined the holotype specimen (PC) and find it to be Nectria pseudopeziza (≡ Calonectria pseudopeziza) of which Nectria mellina (≡ C. mellina) is an later synonym. Within N. pseudopeziza the ascospore size ranges from 25-60 x 4-7 μm. This variability is characteristic of many long-spored ascomycetes.

The holotype specimen (PAD) was examined. Specimens in Theissen, Decades fungorum brasiliensium #88 (BPI, FH-G), issued as Calonectria rickiana, are authentic, collected in February, 1907. Puttemansia rickiana occurs on the carbonous stroma of Phaeodomus lauracearum Höhnel. The white to cream, fleshy ascocarps contain bitunicate asci and long-clavate ascospores. This species is correctly placed in Puttemansia. It is related to other species of hypocreoid Pleosporales in Melioliphila and Podonectria.

Calonectria rigidiuscula (Berk. & Br.) Sacc., Michelia 1:313. 1878.
≡ Calonectria hibiscicola P. Henn., Hedwigia 48:105. 1908.
≡ Calonectria eburnea Rehm, Hedwigia 37:196. 1898.

Type: Ceylon. On bark. (no. 173c).
The holotype specimen (K) was examined macroscopically and appears to agree with the descriptions and illustrations by authors who have examined it microscopically (Petch, 1920; Booth, 1971). The ascocarp wall structure and anamorph are quite unlike those of Calonectria sensu stricto (Rossman, 1979). This species is retained in Nectria. N. rigidiuscula as Calonectria has been described, illustrated and discussed by Petch (1920), Weese (1924, 1927), Wollenweber (1926), Reinking & Wollenweber (1927), Wollenweber & Reinking (1935), Booth & Waterston (1964) and Booth (1971). This organism, particularly as the anamorph Fusarium decemcelare Brick, causes a disease of Theobroma cacao and other tropical plants.

[Calonectria rubiginosa A. L. Smith ex P. Syd., Just's Botanischer Jahresbericht 29:175. 1901, lapsus calami.]

This name, published as Hypocrella rubiginosa, was mistakenly cited as Calonectria in Sydow's list of new fungi. The holotype specimen (K) was examined. This species is correctly placed in Hypocrella (Clavicipitales). Although this one is "parasitic" on Hypoxylon, most species of Hypocrella occur on scale insects.

Type: Brazil. In hypophyllo folii Eugeniae bagensis. Sao Leopoldo, Rio Grande do Sul, 1908, Theissen S. J.

The holotype specimen (S) was examined. Authentic specimens were issued in Rick, Fungi Austro-americani #322 (BPI, FH-G, FH-P, NY, S) and Theissen, Decades fungorum brasiliensis #151 (BPI). This name is a later synonym of "Calonectria" höhnelii, the name under which the placement of this species is discussed.

≡ CRYPTODISCUS RUTILUS (Kirschst.) Rossman, comb. nov.

Type: Germany. Wald bei Rathenow. a. d. H. Auf morschem Kieferholz.

The holotype specimen (B) was examined. Notes inside the packet are labelled with the epithet "dissipata", an unpublished, alternative name. This species has unitunicate asci, each with the distinctly thickened apex of ostropalean fungi. After consultation with M. A. Sherwood, this species is placed in Cryptodiscus. Unlike most species of Cryptodiscus whose ascocarps are barely erumpent at maturity (Sherwood, 1977), the ascocarps of C. rutilus become almost superficial. The ascocarps are small apothecia occurring on well-rotted wood.

Type: Denmark. On dead branches of Salix cfr. alba (Dec.; J.: Marielund near Kolding).

This name is not validly published as no diagnosis is provided. When Munk (1957) mentioned Poul Larsen's herbarium name, Munk noted that Larsen's specimen on Salix was exhausted. However, he stated that Larsen had previously determined another specimen on Lonicera to be C. salicis. Munk cited a specimen on Lonicera as "Calonectria cfr. richoni Sacc." I have examined this specimen (C) and find it to be Nectria pseudopeziza (= Calonectria pseudopeziza), of which C. richonii is a later synonym.

Type (translated from Japanese): Japan. Parasitic on the sheath of Sasa albo-marginata. Collected in Kawakami village of Mino Province (Feb.)

The holotype specimen is not at TNS and has not been located.

Calonectria sceptri (Karst.) Sacc., Michelia 1:314. 1878.
= Nectria daacrymycella (Nyl.) Karst. var. sceptri (Karst.), Fungi Fenn. exs. #667. 1867.
= NECRIELLA SCEPTRI (Karst.) Rossman, comb. nov.
= Calonectria curtisi (Berk.) Sacc., Michelia 1:316. 1878.
= Nectria curtisi Berk., Grevillea 4:46. 1875.

Type: Finland. Ad caules emortuos Sceptri Carolini in Subovi die 11 Julii.

The collection data cited above are taken from Karsten's (1864) first publication of this species in his article on fungi "in Lapponia orientali." In 1873 he cited similar collection data, "ad caules emortuos Sceptri Carolini in Lapponia maxime boreali, Subovi, mense Julio reperimus" and listed the exsiccatum, "Karst. Fung. Fenn. 667," which bears the data "Subovi, pa torra stjelkar af Sceptrum carolin., 11 Juli 1861" and is labelled "Nectria daacrymycella Nyl. var. sceptri." In all cases it would seem that Karsten is referring to the same collection. In 1864 the ascospore size is listed as "longit. 10-12 mm., crassit. 2-2.5 mm.," while in 1874 Karsten cited this as "longit. 12 mm., crassit. 2.5 mm." and on the packet of Fungi Fenniae exs. #667, it is "14-18 mikr. longit., 3.5-4 cr." The holotype (H) and an isotype specimen (FH-H) of Fungi Fenniae exs. #667 were examined. This species is found to be a Necriella having immersed ascocarps
and clavate asci, each with an apical ring. Ascospores of *N. seeptri* range from 12-20 x 2.5-4.5 μm, thus including those cited in all Karsten's descriptions. The ascospores of *Sphaeria dacrymycella* (= *Calonectria dacrymycella*) are listed by Nylander (1865) as "longit. 0,016-18 millim., crassit. 0,004-5 millim." If the type collection of *S. dacrymycella* is identical to specimens identified later by Rehm, Ascomyceten #232 and #232b, as *Nectria dacrymycella*, this name will provide an earlier epithet for the species.

= *Nectria sensitiva* Rehm, Hedwigia 39:222. 1900.
Type: Brazil. Ad folia Mimosaceae. Rio de Janeiro. Ule no. 2274. H. P.

The holotype (S) and isotype specimens (FH-G, FH-H) were examined. This name is found to be a later synonym of *Nectria leucorrhodina* (= *Calonectria leucorrhodina*). Höhnel & Weese (1910) stated that *N. sensitiva* is a synonym of *N. byssiseda* Rehm, also a synonym of *N. leucorrhodina*.

The holotype (S) and isotype specimens (FH-G filed under *Mellitosporiopsis violacea* Rehm, FH-H) were examined. This name is found to be a later synonym of *Melioliphiola violutella* (= *Calonectria violutella*).

Rehm (1915) listed a specimen under *Calonectria sulcata* with the same collection data as those listed by Weese (1924) and on herbarium specimens (S, FH-H) labelled *C. squamulosa*. Rehm may have recognized the synonymy with *C. sulcata* and decided against publishing this name. However, Weese (1924) picked up the unpublished name and stated that the type species of *C. squamulosa* Rehm, 1913, is identical to *C. sulcata*, a later synonym of *Nectria rigidiuscula* (= *Calonectria rigidiuscula*). Examination of the specimen cited by Weese (1924) reveals that it is *Nectria rigidiuscula*, as previously recognized by Weese (1927), Reinking & Wollenweber (1927), Wollenweber & Reinking (1935) and Booth (1971).
≡ TUBEUFIA STROMATICOLA (P. Henn.) Rossman, comb. nov.
Type: Peru. Berge südwestlich von Monzon, 2000-2500 m, auf lederigen Blättern einer Lauracea, Weberbrüer #3530.

Isotype specimens (FH-G, FH-H as 'leptostromaticola') were examined. Because the holotype, presumably at B, has apparently been destroyed, the isotype in FH-G is here designated the LECTOTYPE. Tubeufia stromaticola occurs on the stroma of a microthyriaceous fungus on the upper surface of a leaf. The transparent, yellow ascocarps are densely covered with short, thick-walled hairs. The asci are bitunicate and the ascospores are long-clavate, finely punctate, 52-66 x 5.5-7.5 μm.

The holotype specimen (S) was examined. Weese (1914b) examined part of the type collection at B but this is apparently destroyed. In agreement with Weese (1924), Reinking & Wollenweber (1927), Wollenweber & Reinking (1935) and Booth (1971), this name is found to be a later synonym of Nectria rigidiuscula (= Calonectria rigidiuscula). For many years Calonectria sulcata was thought to be the oldest epithet and much of the older literature (Höhnel, 1909; Weese, 1914b; Rehm, 1915) used this name for Nectria rigidiuscula.

The holotype specimen (S) was examined. In agreement with Weese (1924), this name is found to be a later synonym of Nectria flavolana. Weese (1914b) examined part of the type collection in H. Sydow's herbarium (B) but this apparently no longer exists. Weese noted that C. sulphurella was synonymous with Nectria tjibodensis and N. flocculenta, all synonyms of N. flavolana. This common, tropical saprophyte on rotten wood has been redescribed and illustrated by Seaver (1928) as Nectria rhytidiospora Pat. (= N. flavolana).
Calonectria tarvisina (Speg.) Speg. ex Sacc. (ut 'Speg.'), Syll. Fung. 2:540. 1883.

Type: Italy. In ramulo emortuuo putrescente Gleditschiae triacanthi, a Treviso, 22 Novemb. 1878, rarissime.

The holotype specimen (LPS) was examined. This name is found to be a later synonym of Massarina viburnicola (≡ Calonectria viburnicola).

Type: Britain. On decaying stalks of Brassica, North Wootton, November 1935; on dead apple twig, Camberley, November 1920, Hb. B. M.

The type specimens could not be located at K or elsewhere.

Type: Jamaica. Port Maria, on cacao trunks, November 14, 1902, F. S. Earle 455.

The holotype specimen (NY) was examined. In agreement with Petch (1920), Reinking & Wollenweber (1927), Wollenweber & Reinking (1935) and Booth (1971), this name is found to be a later synonym of Nectria rigidiuscula (≡ Calonectria rigidiuscula).

Type: Ceylon. On mature leaves of Camellia theae in culture.

The holotype specimen (IMI) reveals that Calonectria theae is similar in ascocarp morphology and the Cylindrocladium anamorph to Calonectria pyrochora (= C. daldiniana, the monotype species of Calonectria) (Rossman, 1979). Loos (1950) erected this name for the teleomorph that developed from a culture of Cercospora theae Petch. Loos stated that this Cercospora actually belonged in Candelospora, which is now considered a synonym of Cylindrocladium (Boedijn & Reitsma, 1950). Peerally (1974b) redescribed and illustrated Calonectria theae and its anamorph which causes "Cercospora disease" of tea.

≡ CALONECTRIA CROTALARIAE (Loos) Bell & Sobers, Phytopathology 56:1364. 1966.
See Calonectria crotalariae for an account of this species.

= Cryptodiscus tinctus Fuckel, Fungi Rhenani #1836. 1866.
= Calonectria fuckelii (Sacc.) Rehm in Transchel & Serebrianikow, Mycotheca Rossica fasc. 2, #68. 1910, non C. fuckelii (Fuckel) Sacc., 1878.

Type: Germany. Ad Hageniae ciliaris thallum apotheciaque, raro. Vere. In Jura colleg. Mortier.

The label of Fuckel, Fungi rhenani #1836, Cryptodiscus tinctus (FH-ex) includes a description of the species which is, therefore, validly published. Fuckel (1870) later listed Cryptodiscus tinctus as a synonym of his newly-described species, Nectriella coccinea, based on the same type specimen. Fuckel may have changed his mind about the identity of Fungi rhenani #1836 when he discovered that it was associated with Illosporium coccineum Fries. Of the isonyms, Cryptodiscus tinctus and Nectriella coccinea, the former provides the earlier epithet. The isotype specimen at FH-ex does not have any suitable fungus on it. From later descriptions (Weese, 1914c; Keissler, 1930; both as Nectriella coccinea) and later specimens of this species, a stable concept of Nectriella tincta has evolved. Specimens of Rehm, Ascomyceten #1897 issued as Calonectria tincta (BPI, CUP, PACA) and Transchel & Serebrianikow, Mycotheca Rossica fasc. 2, #68, issued both as C. tincta (CUP) and C. fuckelii f. everniae (BPI, FH-ex), are all Nectriella tincta.

Type: Brazil. Folium putridum Agaves. Ule no. 841. b. H. Bresl.

The holotype (S) and isotype specimens (FH-H, S) were examined. This name is found to be a later synonym of Nectria arenula as noted by Samuels (1978). N. arenula is redescribed and illustrated by Samuels (1978) and Booth (1959).

Calonectria trichilae Rehm, Hedwigia 37:198. 1898.

Type: Brazil. Feuilles de Trichilia. Balansa pl. du Paraguay no. 4015. H. B.
Two isotype specimens, both in FH-H, were examined. This name is found to be a later synonym of Melioliphila volutella (≡ Calonectria volutella). Rehm (1898) noticed that Calonectria trichiliae was related to C. ambiguа (≡ Melioliphila volutella). Weese (1914b, 1927) stated that C. trichiliae was synonymous with C. melioides (≡ Melioliphila melioides).

Type: West Indies. St. Lucia, on a leaf-hopper, 20 November 1939, collected by Mr. R. G. Fennah.

The type collection is not at K and has not been located. The habit on leafhoppers and associated Hirsetella anamorph suggests that this species belongs in the Clavicipitales.

Calonectria tubaraoensis Rehm, Hedwigia 37:195. 1898.

Several of the syntypes were examined. Ule #923a (S) is here designated the LECTOTYPE. The lectotype and Ule #1021 (FH-H) are Nectria leucorrhodina (≡ Calonectria leucorrhodina). Ule #1524b (FH-G) is Calloriopsis gelatinosa (Ellis & Everh.) Dennis. From the original publication, it is apparent that Rehm was describing Nectria leucorrhodina of which Calonectria tubaraoensis is a later synonym. Weese (1914a) noted that C. tubaraoensis was synonymous with C. leucorrhodina (≡ Nectria leucorrhodina). Rehm, Ascomyceten #1920 issued as C. tubaraoensis (BPI, CUP, FH-G, NY) is Nectria leucorrhodina.

Type: Uganda. In plagulas Irenis natalensis parasitica, in foliis Oncobae spinosae, Entebbe Road, Hansford 2490.

The holotype (IMI) and authentic specimens (BPI: Hantsford 2835, 3192, 3326, 3327, 3332, 3362, 3371, 3372; PREM: Hansford 3327) were examined. This species belongs in Melioliphila; the name is found to be a later synonym of M. volutella (≡ Calonectria volutella).

the holotype specimen (IMI) was examined. This is a later synonym of Nectria leucorrhodina (= Calonectria leucorrhodina). The associated anamorph, Cylindrocarpon ukolayi Thaung, appears to be the Cephalosporium (= Acremonium) often found with this species which is described by Gams (1971) as the anamorph of Calonectria cephalosporii (= N. leucorrhodina).

Calonectria ulicis (Crouan & Crouan) Sacc., Michelia 1:316. 1878.
\[\equiv \text{NECTRIA ULICIS} \text{ Crouan & Crouan, Florule du Finistere p. 58. 1867.} \]

Type: France. Finistere, sur les racines et tiges mortes d'Ajonc. Pr. p. c.

Isotype specimens (CO) consisting of two packets were examined. The one with Crouans's drawings is here designated the LECTOTYPE. In addition four more packets of authentic collections (CO) were examined. This species is found to be a Nectria with unisepitate spores belonging to the Nectria mammoidea-group as delimited by Booth (1959).

\[\equiv \text{NECTRIA ERUBESCENS} \text{ (Desm.) Phill. & Plowr., Grevillea 10:70. 1881.} \]

Type: Bermuda. Near Harrington Sound, on dead stems of Foeniculum foeniculum.

The holotype specimen (NY) was examined. In agreement with Samuels (1978) this name is found to be a synonym of Nectria erubescens (= Calonectria erubescens).

\[\equiv \text{CALONECTRIA KYOTENSI S} \text{ Terashita, Trans. Mycol. Soc. Japan 8:124. 1 Jan. 1968.} \]

Type: Germany. In culturis puris Cylindrocladii scoparii ex radicibus putridis Paphiopedili callosi; Celle, IV 1967. Typus in herbario Instituti Mycologici sub No. 10759 conservatur (Biologische Bundesanstalt, Berlin-Dahlem).

An isotype specimen (NY) of the type culture was examined. In agreement with Peerally (1974a), this name is found to be a later synonym of Calonectria kyotensis.

Although listed by Tai (1937), the type specimen has not been located.
Calonectria varians Sacc., Michelia 1:52, 1877.
≡ NECTRIA VARIANS (Sacc.) Rossman, comb. nov.

Type: Italy. In ramis putrescentibus corticatis Mori albae, socia Botryosphaeria pulicari & moricola, a Selva Aug. 1876.

The scanty holotype specimen (PAD) was examined. This hypocreaceous species is related to Nectria citrinaureantia (= Calonectria citrinaureantia). Nectria varians has small, translucent-yellow, smooth ascocarps crowded on a well-developed stroma. The asci are unitunicate and the ascospores are broadly-ellipsoid, three-septate, 19-24 x 6-8 μm. The stroma develops at the base of, or through the old stromata of Gibberella species. This may be what led Wollenweber & Reinking (1935), followed by Booth (1971), to suggest the synonymy of C. varians with Gibberella baccata (Wallr.) Sacc.

Type: Venezuela. In foliis putridis Fici radulae Willd., El Limon (no. 301).

The holotype specimen has not been located.

The holotype specimen (K) has nothing left of the described fungus. Petch (1938) considered this species a synonym of Trichonecctria hirta (≡ Nectria hirta, ≡ Calonectria hirta) and from the original description, C. vermispora is most probably a later synonym of this distinctive species.

≡ NECTRIA VERNONIAE (Hansf.) Rossman, comb. nov.

Type: Uganda. In foliis Vernoniae campaneae, Entebbe Road, Hansford 3502.

The holotype (IMI), an isotype (PREM) and an authentic specimen (IARI) were examined. This species is unique in having small, yellow-brown ascocarps superficial on living leaves, unitunicate asci and long, vermiciform, multisepitate ascospores, 70-110 x 2-3 μm. The ascocarp structure is unlike that of Calonectria pyrochroa (= C. dalziniana, the monotype species of Calonectria) (Rossman, 1979); C. vernoniae is, therefore, placed in Nectria. The ascocarp wall of Nectria vernoniae is 18-22 μm thick, consisting of two layers. The outer layer is prosenchymatous while the inner one is pseudoparenchymatous, composed of small, thin-walled, elongate cells. This ascocarp structure suggests that N. verno-
niae belongs in the *Nectria muscivora*-group as delimited by Samuels (1976a)

≡ **NECTRIA ASTROMATA** (Pat.) Rossman, nom. nov.

Type: Ecuador. Tiges pourries de Chusquea. San Jorge.

The holotype specimen (FH-P) was examined. This species has yellow, warty ascocarps which are superficial on the substrate. In structure the ascocarps are similar to those of *Nectria rigidiuscula* (≡ *Calonectria rigidiuscula*) but, like *N. albosuccinea* (≡ *C. albosuccinea*), *N. verrucosa* lacks a well-developed stroma, as the new epithet suggests. The asci are unitunicate and the ascospores are long-fusiform with rounded ends, 7- to 9-septate, 50-62 x 7-9 μm. The epithet of the basionym of *N. astromata* is preoccupied in *Nectria* by *N. verrucosa* (Schw.) Sacc., 1883.

The type collection of this species was issued in Thumen, Mycotheca universalis #1550 (B, BPI, FH-H, NY, NYS) and Roumeguère, Fungi selecti exs. #4760 as *Nectria verruculosa* (BPI, NY). The isotype specimen of Mycotheca universalis #1550 at NY is here designated the LECTOTYPE. In agreement with Weese (1914b, 1918) and Booth (1959), this species is found to be a later synonym of *Nectria ralfsii* having a *Myrothecium* ana­morph. Booth (1959) redescribed, illustrated and listed the synonyms of *N. ralfsii*.

Calonectria viburnicola (Crouan & Crouan) Sacc., Michelia 1:311. 1878.

≡ *Nectria viburnicola* Crouan & Crouan, Florul de Finistère p. 39. 1867.

≡ MASSARINA VIBURNICOLA (Crouan & Crouan) Rossman, comb. nov.

Type: France. Finistère, sur les rameaux morts de *Viburnum tin.?Pr. r. r.*

The holotype specimen (CO) was examined. This species has bitunicate asci in immersed ascocarps which show only the bright yellow-orange wall around the ostiole and are surrounded by a poorly-developed clypeus. The ascospores are
long-fusiform, hyaline, becoming golden-brown with age, 5-to 9-septate, constricted at the central septum, 58-77 x 8-14 μm.

Calonectria volutella (Berk. & Br.) Sacc., *Michelia* 1:309. 1878.

≡ *MELIOLIPHILA VOLUTELLA* (Berk. & Br.) Rossman, *comb. nov.*
≡ *Melioliphila graminicola* Stev. [*ut '(Stev.) Specg']*, Bol. Acad. Nac. Ci. 26:34. 1924.

Type: Ceylon. On leaves of *Atalanta monophylla* on a lichenoid hispid white crust. (nos. 445, 448).

Syntype specimens (K-445, UPS-number unknown) were examined; the specimen at K is here designated the LECTOTYPE. Occurring on *Meliola*, this species has white, fleshy asccarps and bitunicate asci. The ascospores are clavate, three-septate, 30-33 x 8-10 μm. This is the earliest epithet for *Calonectria* graminicola Stev., the monotype species of *Melioliphila*. *M. volutella* is associated with an *Eriomyopsis* anamorph. Pirozynski (1976) mistakenly cited *Melioliphila melioloides* as the type species of *Melioliphila*. See *C. ambiguа* for further discussion of *Melioliphila* and *Subiculicola*.

Calonectria warburgiana P. Henn. in O. Warburg, *Monsunia* 1: 25. 1899.

Type: Indonesia. Moluccas, Batjan: auf Blättern von *Phyllocladus digitata* Warb. (O. Warburg.)

An isotype specimen (FH-H) no longer has any of the described fungus on it. Weese (1927) examined the holotype specimen from B, which apparently has been destroyed, and stated that *C. warburgiana* was a synonym of *Calonectria balanseana*. From the original description, Weese seems to be correct and this species is considered a later synonym of *Melioliphila balanseana* (≡ *Calonectria balanseana*).

Type: Switzerland. In caulibus Epilobi. The holotype specimen (UPS) was examined. The only fungus present was pycnidial. From the original description and host of Strasser (1911), this species probably belongs in Nectriella but until a good authentic specimen is found, the species cannot be accurately characterized.

ACKNOWLEDGMENTS

For the loan of type specimens I am sincerely grateful to the curators and their assistants at the numerous herbaria mentioned in this article. I am continually indebted to Dr. Richard P. Korf for his expert advice and kind support while working on this project. This work was conducted during my tenure as the Anna E. Jenkins Postdoctoral Fellow at the Plant Pathology Herbarium, Cornell University.

LITERATURE CITED

554

ADDENDUM

Type: Australia. IMI 174836 e fructis arboris pluviosilvestris ignotae, Whitfield Range prope Cairns, Queensland, January 1973, se junctus.

The holotype of this species has not been examined. From the illustrations and Cylindrocladium conidial state, it appears to belong in Calonectria sensu stricto. The ascospores are relatively short (6.7-10.7 μm) and uniseptate. In the anamorph, Cylindrocladium camelliae Venkataramani & Venkata Ram, the presence of a terminal vesicle is variable, "rare in older cultures", suggesting that this structure should not be considered of great taxonomic importance.

INDEX

Absconditella 505, 531; Duplicella 485, 605, 531; sphagnorum 505
Acremonium 496, 509, 548
Acrordicyt 506
Allonecte 523; lagerheimii 523
Allonectella 515; GUARANITICA 485, 514; rubescens 515
Alternaria 506
Antipodium spectabile 490
Anthostomella baihensis 490
Apiospora montagni 534
Arthrinium 534
Bacstrium 516
Balansia redundans 491
Barya 518, 536
Berkeleya stromaticola 544
Broomella 515; guaranitica 514, 515; lagerheimii 523
Byssocallis 496; CAPENSIS 485, 486; phoebe 496
Byssonectria 521; javanica 521
Byssostilbe 518, 536
Calloriopsis gelatinosa 547
Calonectria 485, 486, 487, 490, 492, 494, 496, 498, 499, 501, 503, 505, 508, 510, 511, 516, 518, 520, 522, 531, 535, 538, 539, 541, 545, 549; aculeata 486, 518; adianti 486, 487; agina 487, 503; alsobuccinea 487, ambigua 487, 488, 514, 547, 551; ambigua v. exappendiculata 488; apoensis 488; appendiculata 488, 489, 529; arcurata 489; atkinsonii 489; aurantiella 489; aurea 489, 490; aurigera 490, 532, 536; bahiensis 490; balaneana 486, 488, 489, 491, 509, 515, 528, 529, 551; balanis-ae 491; balsamea 491, 501, 508; bambusae 491, 492; bambusina 492; bisepata 492; blyxani 493; blyxani v. umbelliferarum 493; blumenaviae 493; bronniartii 494; bryophila 494; calami 493, 494, 519, 522, 533; callorioides 495; camelliae 495, 556; canadensis 495, 532; capsensis 496; celata 496; cephalosporia 496, 524, 526, 548; cerea 490, 497, 512, 534; chlorinella 489, 497; chorleyi 497, 551; ciliatum 498; cinnabarina 498; circumposita 498; citrinouautia 498, 549; cocidophaga 499; coffeae 499; colhounii 499; collapsa 499; copelandii 500; coralloides 500, 549; crenea 500, 540; cressentiae 501, 507; crotalariae 501, 545, 546; cucurbitula 492, 501, 508; curtisi 501, 542; cyathula 502; dacyrmycella 502, 542, 545; dacyrmycella f. aconiti 502; daldiniana 485, 492, 494, 496, 499, 503, 516, 520, 522, 535, 538, 545, 549; dearnessi 503, 504; decora 487, 503, 504, 528, 538; decora f. parasitica 504; diminuta 504; diploa 504; discophora 505; dolichospora 505, 527; duplicella 505, 531; eburnea 506, 540; ecuadorica 487, 490; effugiens 506; epimycés 488, 500; equiseti 507; erubescentis 501, 507, 530, 548; erysiphoides 508, 529; eurythrina 508; eucalyptina 508; ferrugina 508; fimbriata 509; flavid 509, 510, 540; flavida v. aurantio- rufa 509; flavitecta 510; floridana 510, 522; frullaniu 510; fuckelli 510, 511, 546; fuckelli f. evertiana 511, 512, 546; fulvida 497, 512; fulicola 512, 526;
Microcera tasmaniensis 499
Microcetrilla nivalis 531
Miyakeamycetes 492; bambusae 492
Monographella 534; divergens 534; nivalis 513, 531, 534
Myrothecium 550
Nectria 485, 486, 490, 492, 494, 495, 496, 499, 511, 513, 516, 520, 521, 531, 533, 535, 537, 548, 549, 550; ALBUSOCINCAE 485, 487, 506, 550; aquifolii-group 490, 492, 495, 497, 501, 508, 532, 538, 539; arenula 493, 507, 513, 516; arenula-group 501, 512, 530; ASTROMATA 485, 487, 550; aurantiaca 495; auranticola 505; aurea 489; aurigera 490, 532, 536; aurigera v. flavitexta 510; bakeri 515; balsamea 491; bloomi 493; brongniartii 494; bryophila 494; bulbohymyli 57; byssiseda 543; BYSSOPHILA 485, 494; CALAMIS 485, 493, 494, 519, 521, 522, 533; canadensis 495, 532; chlorinella 497; cinnabarina-group 495; citrinourantia 498, 549; COCCIDIOPHAGA 485, 499; coccinea-group 516, 525; COLAPSA 485, 499; curtisi 501, 542; CYATHULA 485, 502; dacrzymycella 502, 542; dacrzymycella f. aconiti 502; decora 487, 503, 504, 528, 538; diminuta 504; diploa 504, 505; diploa v. diminuta 504, 505; ellisi 509; epi-sphaeria-group 490, 502, 504; erubes- cens 501, 507, 530, 548; ERYTHRINA 485, 508; flamea 505; flavida 509; flavolata 544; flioculenta 544; fuckelii 511, 546; fulvida 497, 512; funicola 512, 526; galligena 516; GERALDSIS 485, 512; gisagora 513; graminicola 513; guarapensis 515; GYMNASPORANZ 485, 515; haematococca 514, 517; helminthi- cola 516; hippocastani 518; hirta 486, 518, 549; JACTATA 485, 513, 527; jungermanniarum 521; LAGERHEIMIANA 485, 522; leitongii 523; leucothecin 496, 507, 515, 520, 524, 525, 526, 543, 547, 548; leucorrhodina-group 515, 521, 522, 524; levieuxii 524, 525; lichenicola 525; luteofusca 512, 526; macrospora 513, 527; mamoidea-group 505, 514, 548; massariae 503, 528; MEGASPORAGA 485, 522; melaina 530, 539, 540; MICROLEUCA 485, 516, 520, 524; MINISCULA 485, 530, 534; muscivora-group 550; muscivora 494, 531; NOVAE-ZEALANDICA 485, 521, 532; ob-voluta 552; ochracoapallida 532; ochroleuca 507, 533, 548; opalinula 533; otagensis 533; oudemansi 534; peziza- group 509, 537; pipericola 520, 521, 524; platascia 553; polyphalama 490, 536; PSEUDOEPEIZA 485, 494, 527, 530, 532, 535, 558, 557, 539, 540, 542; pulchermina 537; punicea 516; pyrochroa 538; pyrochroa-group 585; ralfsii 550; rigidiuscula 487, 500, 506, 509, 510, 517, 528, 540, 543, 544, 545, 550; rhytidospora 544; sceptri 542; sensitiva 524, 543; subfalcata-group 503; sylvana 509; tjiobodensis 544; ulicis 548; VARIANS 485, 549; VERNONIAE 485, 549; verrucosa 550; verruculosa 550; viburnicola 550; volutella 551
Nectriella 493, 511, 526, 532, 542, 552; bloomi 493; cocinea 511, 546; dacrzymycella 502, 542, 543; fuckelii 510, 511; fomicola 512; graminicola 513; lichenicola 525; luteola 526; OBOLJUTA 485, 532; robergei 525; SCEPTRI 485, 493, 501, 502, 522, 542, 545; tincta 511, 512, 546
Neonecctria reteaudii 539
Nitschkea cupularis 518
Ophionectria 498, 520; hendidixii 517; mellina 530; muscivora 494; trichospura 498; vernoniae 549
Paranectria 500; coralloides 500
Paranectriella 500
Peziza leucocorhodina 524
Phaeoconidium lauracearum 540
Phyllachora 515; phyllostachydis 492
Phylloporina hohneliana 519
Pleonecctria pyrrochiora 538
Podonectria 523, 540; gahnia 519
Porina epiphylla 532; hohneliana 519; limulata 508, 509
Pronecctria lichenicola 525
Pseudodiplodia umbiliferarum 493
Pseudomeliola 517
Pseudonectria 494, 521; brongniartii 494; jungemanniarum 521
Puteutansia 523, 540; lagerheimii 523; lanosa 523; rickiana 540
Saccardomyces 517; socius 517
Schweinitziella 517
Scoleconeccria 495, 501; canadensis 495; cucurbitula 492, 501, 508; polythalamia 490, 536; tetraspora 540, 545
Sphaeria agnina 487, 503; cerea 497; cucurbitula 501; dacrzymycella 502, 543; decora 503; duplicella 505; erubescens 507; flavida 509; fomicola 512; levi-euxii 524, 525; luteola 526; mellina 530, 536; muscivora 531; ochraceopallida 532, 536; platascia 535; pseudopeziza 536; xantholeuca 552
Sphaerostilbe canadensis 495
Subiculicola 488, 551; ambigua 487, 551
Tetracrium 523
Thyronectria 492, 497, 538; balsamea 491, 501, 508; chlorinella 497; pseudotrichia 490, 532, 536; pyrrochiora 504, 538; xanthoxyli 497
Torrubia 518, 536
Trichonectria 486, 518; aculeata 486, 518; hirta 486, 518, 549
Trichopeltis ferruginea 508; obtecta 532
Tubercularia 525
Tubefia 485, 489, 497, 516, 523, 534; asclepiadis 517; ARANTIELLA 485, 489; cerea 490, 497, 512, 534; helicoma 534; javanica 497; 534; PACHYTHRIX 485, 534; palmarum 489; paludosa 497, 506, 534; STROMATICOLA 485, 544
Neesia 491; balansiae 491
NEW COMBINATIONS IN RHIZOPLACA
FOR ENDEMIC AMERICAN SPECIES OF LECANORA AUCTT.

WILLIAM A. WEBER

University of Colorado Museum
Boulder, Colorado 80309

SUMMARY

Three new combinations, Rhizoplaca glaucophana, R. haydenii and R. marginalis are proposed, with notes on previously unreported characters.

The genus Rhizoplaca Zopf was recently revived for some umbilicate species formerly included in Lecanora (Leuckert, Poelt & Hähnle 1977). However, only those species occurring in Eurasia were treated. North America contains three endemics that should also be transferred.

According to Poelt (1958) this taxon was known only from the type specimen from the San Gabriel Mountains of California, 1300 msm, June 1897, Hasse in herb. Nylander no. 28256 (H). Recently Miss Jeanne Larson collected ample material of it on the San Joaquin Experimental range.

The spores, of which Poelt found only undeveloped individuals, are narrowly oblong, curved and often narrower at one end, 15-20 X 3-5 μm. Spores in the other species of the genus are broadly ellipsoid or almost spherical. The pycnidia are visible as black surface dots and the pycnoconidia are acicular, curved, 25-40 X less than 1 μm. R. glaucophana might be mistaken for a juvenile thallus of R. marginalis but although its largest thalli reach a diameter of only 7 mm they are fully fertile even at 3 mm and they have immersed brown apothecia which only in age develop even a slight tendency to marginal rim formation and are very rarely lightly pruinose on the disk and thallus. R. marginalis develops a large thallus up to 2 cm, has blue-black, adnate apothecia with prominent contorted rims, and the entire thallus is very thickly pruinose.

Poelt reported this taxon only from Nebraska and Wyoming. It is present in Montana: Carbon Co.: Beartooth Plateau, 12,600 ft., 15 Aug. 1977, Nash 15164 (ASU, COLO); Park Co.: on soil, travertine mines ca. 2 km N of Gardiner, 18 April 1977, DeSpain 103 (COLO).

This taxon has a peculiar distribution involving both the eastern and western bases of the Sierra Nevada Range in southern California, suggesting that its origin possibly antedates the uplift of the range. The substrate for the type was given as "on shaded lava and basaltic rocks at Little Lake Station, Inyo County" but I searched for it there without success. However, *R. marginalis* is common on huge granite boulders on the road to Whitney Portal, across the draw from the first Forest Camp W of Lone Pine (COLO L-35237). Since this is the only substrate it has been found on in its entire range I believe it likely that Hasse's statement was incorrect. Elsewhere in California *R. marginalis* is now known to occur in Tulare and Madera counties. Pycnoconidia are curved, acicular, 25-40 X <1 μm.

References Cited

REVUE DES LIVRES

par

G.L. HENNEBERT

Book Review Editor, Croix du Sud 3, 1348 Louvain-la-Neuve, Belgique

L'ouvrage se présente sous forme de fiches de format 21 x 15 cm, portant sur une face la photographie de l'espèce et son nom, de l'autre, une courte notice descriptive. La qualité de la reproduction est irrégulière mais l'ensemble des 234 illustrations vaut cependant la peine et représente déjà un bon échantillon de la mycoflore du pays basque. La série sera régulièrement continuée.

L'auteur a voulu un livre didactique, à la portée de tous et cependant un livre scientifique, sans approximation. Il emploie l'image pour rendre parlantes les clés majeures, et pour définir les termes techniques réunis dans le glossaire. C'est aussi par une photographie de haute qualité qu'il guide le mycologue débutant au cœur du sujet. 422 espèces sont décrites, 280 sont illustrées; chacune fait l'objet de commentaires visant à les distinguer d'espèces voisines, au nombre de 258 citées. La caractéristique de l'ouvrage est l'importance des clés, clés des classes et des familles, clés des genres et des espèces. Les noms d'espèces sont correctement cités avec noms d'auteurs. Les descriptions sont détaillées. L'édition est fort agréable.
AJELLO, LIBERO & ARVIND A. PADHYE. An orthographic correction 383-384
AMMIRATI, JOSEPH F. & CLARK L. OVREBO. Type studies: some Cortinarius and Tricholoma species described by Charles Horton Peck 353-371
BATRA, LEKH R. First authenticated North American record of Monilinia fructigena, with notes on related species 476-484
BURK, WILLIAM R. Clathrus ruber in California and worldwide distributional records 463-468
BURK, WILLIAM R. & GEORGE F. LIPONE. Pisolithus tinctorius, a pavement breaker in southern California 469-470
CANDOISSAU, FRANÇOISE. Recolte de Cordyceps intermedia dans les Pyrénées Atlantiques, espèce nouvelle pour l'Europe 459-462
CORDEN, MALCOLM, see STEWART & CORDEN
CUMMINS, GEORGE B., see SOLHEIM & CUMMINS
DANIELS, BARBARA A., see ROSE, DANIELS & TRAPPE
D'ESPOSITO, FELICIA R., see OSORIO & D'ESPOSITO
DUMONT, K. P., see FARR, ELIASSON & DUMONT
DYKO, B. J. & B. C. SUTTON. New and interesting dematiaceous hyphomycetes from Florida 119-124
ELIASSON, U., see FARR, ELIASSON & DUMONT
FARR, D. F., see POLLACK & FARR
FARR, M. L., U. ELIASSON & K. P. DUMONT. Myxomycetes from Ecuador 127-134
FREEMAN, ALICE E. H. Agaricus in North America: type studies 1-49
FREEMAN, ALICE E. H. Agaricus in the southeastern United States 50-118
GALLAND, M. C., R. F. O. KEMP & M. K. JURAND. The species problem in the Peathyrella condolleana complex 329-332
GRAY, DENNIS J., see MORGAN-JONES & GRAY
GUNNERBECK, ERIK & ROLAND MOBERG. Lectotypification of Physonia, a generic name based on a misspelled type name - a new solution to an old problem 307-317
HALLLING, ROY E. Notes on Collybia. I. Collybia alcalivirens 453-458
HENNEBERT, G. L. Revue des Livres 318-320; 561
HENNEBERT, G. L., see WERESUB & HENNEBERT
JENKINS, DAVID T. A new species of Amanita 174-176
JENKINS, DAVID T. & JOANNE VINopal. A new Amanita from Florida 177-180
JURAND, M. K., see GALLAND, KEMP & JURAND
KATZ, BARRY, see McGINNIS & KATZ
KEMP, R. F. O., see GALLAND, KEMP & JURAND
LATA, KANCHAN, see MISRA & LATA
LATA, KANCHAN, see MISRA, SRIVASTAVA & LATA
LIPONE, GEORGE F., see BURK & LIPONE
McGINNIS, MICHAEL R. & BARRY KATZ. Ajellomyces and its synonym Emmonsella 157-164
MISRA, P. C. & KANCHAN LATA. Studies on the Dimargaritaceae (Mucorales) II. A new Dipsira parasitic on ascomycetous hosts 372-376
MISRA, P. C., K. J. SRIVASTAVA & KANCHAN LATA. Apophysomyces, a new genus of the Mucorales 377-382
MOBERG, ROLAND, see GUNNERBECK & MOBERG
MORGAN-JONES, G. Notes on hyphomycetes. XXVIII. Veronaea bambusae sp. nov. 149-151
MORGAN-JONES, G. Notes on hyphomycetes. XXX. On three species of Idiella 402-410
MORGAN-JONES, G. Notes on hyphomycetes. XXXI. Chaetospina aburmensis sp. nov. 411-416
MORGAN-JONES, G., see SINCLAIR & MORGAN-JONES
MORGAN-JONES, G. & DENNIS J. GRAY. Notes on hyphomycetes. XXVII. Mycogone pellicybina, a new mycoparasitic species 144-148
ORR, G. F. The genus Pseudogymnoascus 165-173
OSORIO, HÉCTOR S. & FELICIA R. D'ESPOSITO. Contribution to the lichen flora of Argentina XI. Lichens from Cabo San Antonio, Buenos Aires Province 239-242
OVREBO, CLARK L., see AMMIRATI & OVREBO
PADHYE, ARVIND A., see AJELLO & PADHYE
PARMASTO, ERAST & ILMI PARMasto. The xanthochroic reaction in Aphyllorophales 201-232
PARMASTO, ILMI, see PARMASTO & PARMASTO
PFISTER, DONALD H. Type studies in the genus *Peziza*. V. Species described by Rehm 187-192
PFISTER, DONALD H. Type studies in the genus *Peziza*. VI. Species described by C. H. Peck 333-338
PFISTER, DONALD H. Type studies in the genus *Peziza*. VII. Miscellaneous species described by M. J. Berkeley and M. A. Curtis 339-346
POLLACK, F. G. & D. F. FARR. A new species of *Stigmia* on *Beaucarnea* (Liliaceae) 193-200
REYNOLDS, DON R. Foliicolous ascomycetes: 3. The stalked capnodiaceous species 417-445
ROSE, SHARON, BARBARA A. DANIELS & JAMES M. TRAPPE. *Glomus gerdemannii* sp. nov. 297-301
ROSSMAN, AMY Y. *Calonectria* and its type species, *C. daldiniana*, a later synonym of *C. pyrochroa* 321-328
ROSSMAN, AMY Y. A preliminary account of the taxa described in *Calonectria* 485-558
Rothwell, FREDERICK M. & JAMES M. TRAPPE. *Aculospora bireticulata* sp. nov. 471-475
SCHNEIDER, R. W., see AMES & SCHNEIDER
SCHMACHER, TROND. *Phialea granigena*, an older name for *Gloeotinia temulenta* 125-126
SERUSIAUX, EMMANUEL. Contribution to the study of lichens from Kivu (ZaYre), Rwanda and Burundi. III. *Veudaea*, a new genus for Africa 135-139
SINCLAIR, ROBERT C. & G. MORGAN-JONES. Notes on hyphomycetes. XXVI. *Unciospora harvoldii* gen. et sp. nov. 140-143
SINCLAIR, ROBERT C. & G. MORGAN-JONES. Notes on hyphomycetes. XXIX. *Obstipispora chevaliniana* gen. et sp. nov. 152-156
SMITH, HELEN V. & WALTER J. SUNDBERG. Studies on the *Lepiotaceae* of the Pacific Coast region. I. Two new species 446-452
SOLHEIM, W. G. Mycoflora Saximontanensis Exsiccata Centum XVI 385-394
SOLHEIM, W. G. & GEORGE B. CUMMINS. Mycoflora Saximontanensis Exsiccata Centum XVII 395-401
SRIVASTAVA, K. J., see MISRA, SRIVASTAVA & LATA
STEWART, ELWIN L. & MALCOLM CORDEN. *Periconiella verrucosa* sp. nov. (dematiaceous hyphomycetes) from Douglas Fir wood 302-306
SUNDBERG, WALTER J., see SMITH & SUNDBERG
SUTTON, B. C., see DYKO & SUTTON
TRAPPE, JAMES M., see ROSE, DANIELS & TRAPPE
TRAPPE, JAMES M., see ROTHEWELL & TRAPPE
UDAGAWA, SHUN-ICHI & SEIIICHI UEDA. *Corynascella inquinata*, a new cleistothecial ascomycete from sewage sludge 292-296
UEDA, SEIIICHI, see UDAGAWA & UEDA
VAN DE BOGART, FRED. The genus *Coprinus* in western North America, Part II: section *Lanatuli* 243-291
VINOPAL, JOANNE, see JENKINS & VINOPAL
WEBER, WILLIAM A. New combinations in *Rhizoploca* for endemic American species of *Lecanora Auctt.* 559-560
WERESUB, L. K. & G. L. HENNEBERT. Anamorph and teleomorph: terms for organs of reproduction rather than karyological phases 181-186
YEN, JO-MIN. Etude sur les champignons parasites du sud-est asiatique. 34. Un nouveau genre, *Cylindrocladiopsis* (Moniliaceée), provoquant une maladie de taches foliaires du *Lagerstroemia* en Malaisie 233-237

PUBLICATION DATES OF MYCOTAXON

Volume 7, No. 2: November 4, 1978
Volume 8, No. 1: January 13, 1979
ERRATA: VOLUME 7

page 455, line 33: for (Died. read Died.
485, 9: for On read In
49: for (1976: read (1967:

ERRATA: VOLUME 8

page 25, line 2: for A. majusculus read A. majusculus var. majusculus
33, 36: for A. read Agaricus
40, 28: for badius read subplacomyces var. badius
65, 37: for rodmani read rodmanii
46: for rodmani read rodmanii
72, 10: for tric sulphuratus read trisulphuratus
108, 42: for micromegatha read micromegathus
111, 26: for rodmani read rodmanii
118, 23: for diminutivus read diminutivus
157, 9; 158, line 25; 160, line 16; 162, lines 1, 8, 17, 24, 34: for capsulata read capsulatus
191, 36: for barleana read barleana
233, 4: for LAGERSTRAEMIA read LAGERSTROEMIA
lines 10 & 14: for lagerstraeamiae read lagerstroemiae
line 16: for Lagerstraeamia read Lagerstroemia
234, 1; 235, line 1; 236, line 38: for lagerstraeamiae read lagerstroemiae
236, 39: for LAGERSTRAEMIAE read LAGERSTROEMIAE
304, add: ERRATUM: The holotype collection, ES #2520, has been divided among 3 herbaria. The portion at MPPD is the holotype, those at OSC and IMI are isotypes. The paratype collection, ES #2522, is also divided, that at MPPD the paratype, those at OSC and IMI isoparatypes.

front cover 8(1), CONTENTS line 8: for Barundi read Burundi
26: for BARR read FARR
30: for Lagerstroemia read Lagerstroemia

REVIEWS

The Co-Editors express their appreciation to the following individuals who have reviewed one or more of the papers in this volume prior to publication.

L. AJELLO
C. J. ALEXOPOULOS
R. A. ANDERSON
R. BARNES
G. L. BENNY
W. J. CAIRNEY
J. L. CRANE
M. S. G. DAVIES
V. DEMOULIN
H. DISSING
J. ERIKSSON
J. L. FIASSON
J. W. GERDEMANN
R. L. GILBERTSON
J. H. GINNS
R. D. GOOS
L. F. GRAND
J. H. HAINES

M. E. HALE, J.
I. R. HALL
R. T. HANLIN
I. Ho
D. HOSFORD
H. L. KEIT
W. B. KENDRICK
J. C. KRUG
J. LAMBINON
H. J. LARSEN
J. L. MAAS
D. MALLOCH
P. MARSH
E. S. MCDONOUGH
K. H. MCKNIGHT
O. K. MILLER, JR.
R. H. PETERSEN
D. H. PESTER

K. A. PIROZYNISKI
J. POELT
S. REDHEAD
D. P. ROGERS
J. ROGERS
H. ROMAGNESI
A. Y. ROSSMAN
R. SANTESSON
N. C. SCHENCK
M. A. A. SCHIPPER
R. L. SHAFFER
A. H. SMITH
W. L. SMITH, JR.
H. D. THIERS
J. M. TRAPPE
R. A. UECKER
A. VÉZDA
C. J. K. WANG
INDEX TO FUNGUS AND LICHEN TAXA, VOLUME EIGHT

This index includes genera, infrageneric taxa, species, and infraspecific taxa. New taxa are in CAPITALS, and the pages where they are published are in italics. Rossman's treatment of Calonectria (pp. 485-558) is separately indexed; reference to that index is indicated by the notation "see".

Absconditella see 556; Duplicella 485, 505, 531
Absidia 380
Acaulospora 300, 347, 352; Bireticulata 471, 472, 473; elegans 472
Acervus epispertius 342
Acremonium see 556
Acroditys 506
Agaricus 1, 50, 51, 89, 107, 446; subg. Agaricus 53, 55, 72; subg. Conioagaricus 53; subg. Euagaricus 52, 55, 71; subg. Lanagaricus 44, 53, 55, 71; subg. Melanophyllum 52; subg. Megasperae 52; subg. Microsperae 52; subg. Psalliota 55, 71; abramis 48; abruptibulbus 2, 76, 83, 91, 106, 108; abruptus 2, 108, 110; albahamensis 3, 73, 85, 86; alachuanus 4, 58, 74, 88, 94, 109, 112; alboluteans 4; alligator 4, 73, 85, 86; altaceous 5, 6; amygdalinus 59, 82; andremii 50, 56, 60, 61; angustifolius 6; approximans 7; argentatus 64, 65; argentus 7, 57, 63; arvensis in abruptus 1, 108; arvensis in palustris 27, 74, 87; auricolor 73, 82, 83; Aurisiccus 50, 75, 101, 102; Badius 40, 74, 92, 93; bambusigenus 108; hisporus 252, 254; bivelatoides 9; bivelatus 48, 70; blazi 6, 10, 73, 80, 81; [v?] minor 81, 82; blockii 10, 76, 111; bruneensis 252-254; californicus 6, 48; v. altaceous 5; campestris 1, 25, 50, 56, 61, 62, 64-69, 86, 100, 103, 114; v. majusculus 24, 25; cervinofolius 11; chlamydopus 11, 15; cinchonensis 12;Ciscoen 13; citrinidiscus 15, 76, 112; comptuliformis 14, 57, 66, 67, 71; comptuloides 15; comptulus 58; corthnatus 12, 15; cretaceus 15, 109-111; clyndriceps 16, 69, 81, 100; v. aureus 8, 56, 58; v. cylindriceps 57, 69; diminutivus 16, 52, 74, 92-94, 97; earlei 17; eastlandensis 17; eludens 18; Fabaceous 110, 111; flavingens 48; floridanus 19, 73, 85-87; glabrus 20; halophillus 20, 25; HANNONII 50, 75, 97; herraduresensis 48, 99; illii 48; hondensis 21; hornei 48; johnstonii 21; kauffmani 22; lalaceps 23, 52; magniceps 23, 24; magnificus 23, 24; maguscus 25; maritimus 20, 25; mcmurphyi 48; meleagris 90; micronegathus 25, 90, 108; NOBELIANUS 50, 73, 78, 79; ochraceiscudus 26; pambpeanus 64; pattersoneae 27; pilosporus 28, 36; placomyces 1, 9, 29, 76, 78, 91-93, 95, 103, 104, 107; v. radius 8, 92, 93; v. flavescens 18; v. microsporus 26; v. placomycetes 105, 106; pocillator 29, 62, 75, 90, 103; PRAECLARESQUAMOSUS 74, 90; pre-magniceps 30, 69, 73, 83, 84; pre-magnus 31, 72, 76, 77, 79-81; praeiminosus 31, 44; projectellus 32, 60, 76, 113, 114; pusillus 25, 33; pseudoplacomycetes 33, 75, 77-79; rhoadsii 33, 75, 100, 101; rodmani 34, 57, 65, 111; rubribrunnescens 35, 74, 91; rutilesques 49; sanguinarius 92; shafteri 49; silvacicus 103, 107, 108; silvicola 60, 107; solidipes 35, 57, 67, 68; sphaerosporus 28, 36; sternigii 49; subalachuanus 36, 74, 89, 94-97; subarvensis 57, 76, 80, 114, 115; subcomptulus 37, 74, 94, 96, 97; subfloridanus 37, 81, 82; subhortensis 37, 75, 99; subnities 39; suboreades 40, 56-58, 94; subplacomycetes 9, 40; v. radius 8, 40, 92; subponerosus 40, 57, 60, 68; subpratensis 41; subfrucens 41, 75, 101, 102; subfrucenscoides 42; subrutilesques 43, 107, 108; subsilvicola 45; sulphureiceps 44, 57, 67, 70, 71, 88; sylvaticus 90, 91; sylvicola 84, 110, 111; tabularis 31, 43, 47; TANTULUS 50, 75, 98; transmutans 368; trisulphuratus 44, 71; venus 45; vinacco-umbinus 45; weberianus 46, 100; wilmontii 46; xanthoderoides 47, 73, 79-81; xanthodermon 59; xuchilensis 49
Ajellomyces 157-160, 164; Capsulatus 157, 168, 160, 162, 564; dermatitidis 157, 158, 160, 162
Albigo candida 386
Aleuria sect Aleurodiscina 341; apiculata 340; reperta 340, 341
Aleurna subapiculata 540
Allonecte see 556
Allonectella see 556; Guarantica 485, 514
Alternaria 506; tenuis 392
Amanita 50, 174, 177, 354; sect Amanita 177; sect Lepidella 174, 175; subsect Solitariae 175, 176; stirps Grossa 176; agglutinata 177; albocereata 177; ALTIFISSURA 174-176; crenulata 177; COMARENSIS ?177, 178; monticulosa 177; muscaria v alba 177; pantherina v multisquamosa 177; pusilla 25, 33; virosa 109; wellsi 177
Amylopohia 206; xantha 208, 213, 214
Amlostereum 206; chailletii 208, 211, 214, 216, 220, 226
Fusarium 328, see 557; solani 328

Galactinia chlorophae 188; fuckelii 188;
furfuracea 189; luteoartella 344; pestersii 343; spraguei 343; tost 191; violaceonigra 191

Ganoderma 206, 224, 208, 211, 214, 216, 220, 224, 226; curtisi 224

Gasterocybe lateritia 390

Geomyces pannorum 170; vinaceus 168-170

Geopxyis amplispora 333; carbonaria 336; cupularis 389; hersperidea 334; pallidula 335; sordecens 343; vulcanalis 336

Geoscypha subcupularis 191

Gibberella see 557

Gigaspora 300; margarita 351, 352

Glomophyllum 206, 224, abietinum 208, 211, 214, 216, 220, 224, 226, 229; protractum 208, 211, 214, 216, 218, 220, 222, 226-229; sepiarium 208, 211, 214, 215, 218, 220, 222, 224, 226-229; trabeum 224

Gloeophyllum 206; dichrous 209, 213, 214, 216, 218, 220, 226

Gloeosporium rubis 391

Gloeotinia GRANIGENA 126; tentulenta 125, 126

Glomus 300, 352; GERDEMANNII 297, 299, 300; infrequens 347, 348; mosseae 351, 352

Gonytrichum 411; macrocladum 415

Graphis pavoniana 240; scripta 240

Griphosphaeria nivalis 531

Guepiniosporis alpinus 389

Gymnascideus petalosporus 170

Gymnascus 168, 171; intermedius 170; reessii 168, 170, 171; rhousoigongyi-nus 168, 169, 171; vinaceus 166

Gymnosporangium confusum 515; kernianum 396; nidus-avis 396

Gymnosporium 120; arundinis 119, 120

Hadrotichum globiferum 392, 393

Hagenia ciliaris 511, 514

Helicomyces 490

Helimnthesporium 516

Helotiella russelli 346

Helotium albumineum 336; destructor 337; planodiscum 337

Hemitrichia calyculata 131; serpula 131

Herpotrichia mutabilis 489, 497, 510

Heterosphaeria linaire 336

Hirschiophorus 206; laricinus 209, 213, 214, 216, 226; pergamensus 209, 213, 214, 216

Hirsutella see 557

Histoplasma capsulatum 156; v capsulatum 162; v duoisi 162

Humaria adusta 333; deligata 334; echinocystis 334; gallinaeae 334; hydrophila 335; microspora 342; subgranula-ta 334; violaceonigra 191

Humaria deligata 334

Hyalorainia 431; amormii 439; amorm 440; psidii 441

Hyalocrea see 557; ARCURATA 485, 489

Hylophora 517

Hydnellum 206, 209, 210, 214, 216, 220

Hydnochaete 201, 203

Hymenochaete 201, 203, 206; fuliginosa 206, 212, 216, 220; rubiginosa 206, 212, 214, 218, 220; tabacina 206, 212, 218, 219, 222, 225, 227

Hymenoscyphus panospora 337

Hymenoscyphus 345; caudatus 403; subcar-neus 337

Hypocrella see 557

Hypoxylon 541

Idriella 402-404, 408; ANGUSTISPORA 402, 404-406; australiensis 403; BAMBUSA 402, 406-408; couratarii 402, 403, 408; desertorum 403; fertilis 403, 408; lunata 402, 403; mycogonoidae 403; ramosa 403, 406; vandalei 403; variabilis 402-404, 408, 409, 411

Illicosporium coccineum 546

Inonotopsis 206; subicula 206, 212, 216, 219, 220

Inonotus 201, 202, 206, 225, 228; cucu-licularis 206, 211, 214, 218, 220; dryophilus 207, 211, 214, 218, 220; hispidus 204; obliquus 203-205, 207, 211, 214, 218, 222; radiatus 207, 211-213, 216, 220, 222, 225; rheades 207, 212, 214, 218, 222; tamaricis 207, 211, 214, 218, 219, 222; weirii 207, 211, 212, 214, 218, 220, 222, 226, 227

Iodophanus 334; granulipolaris 344; SUB-GRANULATUS 344; testaceus 334

Irene natalensis 547; podocarpi 496

Irpex 206; lacteus 209, 213, 214, 216, 226

Ithyphallus ravenelii 470

Jafnea fuscicarpa 543; semitosta 543

Kellermannia anomala 390

Keratinomyces 383; ajelloii 383; v nana [nana] 383

Kriegeria enterochroma 337

Lachnea pelita 336; stictica 344; tex-tensis 344

Lachnea agrostina 336; solenia 337; subochracea 337; tiliae 337; viridicoma 337

Lachnellula 312; agassizii 345; cryso-phthalma 312, 389; inspersa 345

Lachnocladium 202

Lachnum pygmeum 345

Laetiporus 206; sulphureus 209, 213,
Meilusporia violacea
Lecanora 559; glaucophana 559; haydenii 560; marginalis 560
Lecidea aestivalis 138
Lepiota 446, 447; felinoides 449; fusiformis 451; GLABRISCA 446, 447, 449, 450; glatfeiteri 449; OREGONENSIS 446, 449-451; rubrotincta 449; rufescens 451
Leptosphaeria 431; brasiliensis 439
Leptosphaeria modesta 502
Letendreae 557
Leucocyclus albo-cincta 339; ovilla 335
Licea bifrons 131; operculata 131
Lichen orbicularis 308-310, 316; pulvulenticus 307-310, 316
Limacinia 422, 427; coffeicola 440; fernandeziana 422
Lycogala epidendrum 131
Lyophyllum 457
Macropodia pubida 343
Malneozyces see 557
Marssonina brunnea 591; potentillae 391
Massaria 503, 504; inquinans 528
Massarina VIBURNICOLA 485, 526, 527, 545, 550
Melampsora albertensis 396; epitea 396; lini 396; medusae 396; paradoxa 396
Melanoma 490
Melanophyllum 52
Melanoporia nigra 224
Meliola 500, 522, 525, 526, see 557; amphiactica 508; andira 514; chorleyi 526; coffeea 497; malchotricha 521; markhamia 496; melastoma 500; panicis 514; parasitans 520; tabernaemontanica 548; teclea 528
Meliolipha see 557; APPENDICULATA 485, 488, 529; CORALLOIDES 485, 500; ERYSI-PHIDES 485, 500; LONGISETOSA 485, 528; VOLUTEILLA 485, 487-489, 497, 498, 514, 526, 529, 543, 546, 547, 562
Mellitosporiopsis violacea 543
Micarea cyanescens 496
Microcera tasmaniensis 499
Microdochium 403; caesiptosum 403
Microheteria nivalis 531
Miyakeamyces see 558
Mollisia nigro-cincta 345; pinastri 337; scripina 337; singularis 337
Monilinia 476, 477, 481, 482; fructicola 476-478, 480-483; fructigena 476-483; laxa 477, 478, 481, 482
Monographella see 558
Mucor 377, 378
Mycogone 144; cervina 148; PSILOCYBINA 144, 145, 147, 148; rosea 148
Myrothecium 550; oryzae 554
Myxophora amerospora 496
Myxotrichium 168
Nanocypha bella 339
Nectria 321, 328, see 558; ALBOSUCINEA 485, 487, 506, 550; ASTROMATA 485, 487, 550; BYSSOPHILA 485, 494; CALAMI 485, 493, 494, 519, 521, 522, 553; cin-nabarina 321, 388; COCCIDOPHAGA 485, 488; COLLAPS 485, 489; CYATHULA 485, 502; ERYTHRINA 485, 508; GERALENSIS 485, 516; GYMNOSPORANGI 485, 516; haematococca 328, 514, 517; JACTATA 485, 513, 537; LAGERHEMIANA 485, 522; legumun 325, 327; macrospora 513, 527; MEGASPORA 485, 513; MICROLEUCA 485, 515, 520, 524; MINUSCULA 485, 530; NOVAE-ZEALANDICA 485, 531; PSEUDOPEIZA 485, 494, 527, 530, 532, 535, 536, 537, 539, 540, 542; pyro-chroa 322, 323, 325, 538; sceptri 542; VARIANS 485, 564; VERNONIAE 485, 564; vuilnicola 550; volutella 551
Nectria bella see 558; OBOLUTA 485, 514; sceptri 485, 495, 501, 502, 522, 544, 543
Neocapnodium 422, 442; tanakae 426, 430; theae 442
Neonectria reteaudii 539
Neotiella albo-tecta 339; spraguei 343
Nigroporus 225
Nitschkea cupularis 518
Nyssopsora clavellosa 397; echinata 397
OBSTIPISPORA 152, 155; CHEWACLensis 152, 153-155
Octospora leucoloma 191; wrightii 344
Oidium ambrosiae 393
Ombrophila enterochroma 336
Onnia 201; triqueter 207, 212, 214, 216, 225
Ophiobolus festucae 388
Ophioceras 520
Ophiomycetia 321, see 558; muscivora 494; puiggarii 325, 327; trichospora 321, 328, 498; veronemiae 549
Orbilia 495; assimilis 336
Osmoporum 224, 228
Otidea grandis 343
Ovularia monosporia 393
Pachyascus byssaceus 138
Pachyella 191, 335, 343; adnata 339; barlaeanae 191; clypeata 335; HYDROPHI-LA 335, 343; punctispora 335, 343; violaceonigra 191
Papularia 120; arundinis 120
Paracapnodium brasiliense 439
Paranectria see 558
Scorias 417, 427, 430, 431, 433, 438, 441, 442; brasilienensis 421, 438, 441; capitata 428; citrina 442; communis 426, 429; cylindricala 426, 429; paulensis 439, 440; philippinensis 421, 428-430, 440, 441; spongiosa 421, 430-438, 442; v longipendiculata 432
Scutellinia 344; cubensis 340; texensis 344
Scylinostroma 202
Secotium agaricoides 390
Septogloeum rhopaloides 391
Septoria scutellariae 391; siberica 391; signalensis 391; urticae 391
Sepultaria 336; fellitica 336
Solenopezia solenica 337
Sowerbyella imperialis 335
Sphaeria 504, see 558; duplicella 505; pseudopeziza 536
Sphaerospora monilifera 342
Sphaerostilbe canadensis 495
Sphaerotheca fuliginea 388
Sporidesmium 140, 143; hamatum 143
Squamaria pulverulenta 308-310
Stammaria 343
Stemonitis axifera 133; fusca 134; herbatica 134; splendens 134
Stigmata 193, 195; BEACARNEAE 193, 195, 197; concentrica 195; crotonicola 195; ulei 195
Stromatinia secalincola 126; temulenta 125
Subicularola see 558
Syncarpella tumefaciens 388
Tapesia atro-fusca 345; balsamicola 336; scariosa 346; vincta 337
Tarzetta bronca 333
Teloschistes chrysophthalmus v cinereus 242
Tephrocybe tylicolor 457
Tetracium 523
Thanatephorus pratcola 183
Thecotheus 341
Thielavia 295, 372; inaequalis 293; ovalispora 295; wareingii 295
Thyronectria see 558
Torrubilla 518, 536
Torula herbarum 394
Trametes 206; cervina 209, 213, 214, 216, 226; hispida 224; suaveolens 209, 213, 214, 216, 220
Tranzschelia cohaesa 400, 401; tucsonensis 401
Trichocladium 402
Tricholoma 353, 355, 368, 370; flavobrunneum 370; odorum 353, 361, 362, 365; pessundatum 370; sejunctum 367; subacutum 353, 362, 364, 365; subsdrejunctum 353, 365-367; sulphureum 362; terriferum 353, 365, 367, 368; transmutans 353, 365, 368, 370; virgatum 364
Trichomerium 422, 423, 440; jambosae 426, 428
Trichonecctria see 558
Trichopeltis see 558
Trichopeziza agrostina 336; capitata 336; distincta 336; myricacea 337; pomicolor 345; subochracea 337; tiliae 337; urticina 337; viridicoma 337
Trichopezizella relicina 337
Trichophyton 383; ajelloi v nana 383, 384; v nanum 383, 384; longifuscum 383, 384; longifuscum 383, 384
Trichothyrium fimbriatum 500
Tubercularia 525; vulgaris 388
Tuberculina persicina 394
Tubefia see 558; AURANTIELLA 485, 489; PACHYTHRIF 485, 534; STROMATICOLA 485, 544
Tyromyces mollis 209, 211, 214, 220, 222, 228
UNCISPORA 140, 143; HARROLDII 140-142
Unguiculariopsis ilicincola 345
Uredinopsis pteridis 396
Uromyces glycyrrhizae 401; intricatus 401; jonesii 401; junci-effusi 401; mexicanus 401; minor 401; psoraleae 401; punctatus 401; viciae-fabae 401
Usnea sulcata 242
Ustilago boutelouae 389; bullata 389; hypodytis 389; neglecta 389
Vals nivea 388
Vararia 202
Velutarina rufo-olivacea 346
Veronaea 151; apiculata 149; BAMBUSAE 149-151; musae 149
Verticillium 145
Vezdaea 135, 138; sect Rheocarpaceae 138; sect Stipitatae 138; sect Vezdae 138; aestivalis 138; FOLICOLA 135, 138, 137; leprosa 138; retigera 138; rheocarpa 138; stipitata 138
Virgariella oblonga 119, 123, 124
Weesia see 558
Xanthochrous 201
Xanthoria parietina 242
Zanclospora 411
MYCOTAXON is a quarterly journal devoted to all phases of mycological and lichenological taxonomy and nomenclature. It seeks to publish all papers within 4 months of acceptance, using photo-offset lithography. All articles are reviewed by specialists prior to acceptance. Publication is open to all persons. Papers may be in French or in English.

SUBSCRIPTION INFORMATION

Each issue of MYCOTAXON may vary in number of pages. Each volume, beginning with volume 3, consists of at least 512 pages, and consists of an irregular number of quarterly issues depending only upon the amount of copy received from authors. Subscriptions are on a per volume basis, not on an annual basis. If only one bill during each year is a requirement, please pay for 2 volumes, which will normally cover one year's issues. Personal subscriptions are available at a substantially reduced subscription rate for individuals who agree not to deposit their copies in another library than their own within three years of publication or receipt. Prices for each volume, beginning with volume 3, are:

- REGULAR (multi-user): $32.00
- PERSONAL (individuals): $14.00

(Vols. 1 & 2 are available at half the above rates per volume.)

- (Complete runs, vols. 1 through the latest complete volume, are subject to a 10% discount.)

MYCOTAXON is also available in MICROFORM (microfiche, microfilm) from University Microfilms, 300 North Zeeb Road, Ann Arbor, MI 48106, from whom prices may be obtained.

MYCOTAXON may also be obtained on a journal-exchange basis. This may be arranged with journals, institutions, or individuals who have difficulty in obtaining foreign currencies. For details and journal exchange forms, write to a Co-Editor.

EDITORIAL SERVICES AND INFORMATION FOR PROSPECTIVE AUTHORS

Authors prepare their own camera-ready-copy after having received comments from pre-submission reviewers. Detailed Instructions to Authors appeared in MYCOTAXON 1: 3-12, 1974, and 6: 370. 1977. A copy of each will be sent upon request to one of the Co-Editors.

We are able to provide prospective authors with two aids to publication. Both are sold at no profit, and are shipped postpaid from MYCOTAXON, LTD., P.O. Box 264, Ithaca, NY 14850 USA.

SPECIAL MANUSCRIPT PAPER is available in packages of 50 sheets, and is ruled in blue, non-photoreproducing ink for each of the two sizes of typeface called for in the instructions to authors (elite, pica). It is a convenience to typists, but certainly not an essential, since the appropriate sized rectangles can be prepared on any paper using a non-photoreproducing blue pencil. Each package of 50 sheets is sent postpaid for $1.60.

BIOPlate is a special sheet of transfer letters for the use of authors in the preparation of plates and graphs for publication. It is manufactured specifically for us, and is available in both black and white. Each sheet is approximately 30 x 39 cm., with a wide assortment of characters (some shown at left in actual size). Our cost is $3.75 per sheet, mailed postpaid (black will be sent unless white is specified).